
Deep Learning HDL Toolbox™
User's Guide

R2020b



How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Deep Learning HDL Toolbox™User's Guide
© COPYRIGHT 2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2020 Online only New for Version 1.0 (Release 2020b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents


What is Deep Learning?
1

Introduction to Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Training Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Training from Scratch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4

Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5

Deep Learning Processor
2

Deep Learning Processor Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
DDR External Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Generic Convolution Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Activation Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Conv Controller (Scheduling) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Generic FC Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
FC Controller (Scheduling) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Deep Learning Processor Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

Applications and Examples
3

MATLAB Controlled Deep Learning Processor . . . . . . . . . . . . . . . . . . . . . . 3-2

Deep Learning on FPGA Overview
4

Deep Learning on FPGA Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

Deep Learning on FPGA Solution and Workflows . . . . . . . . . . . . . . . . . . . . 4-4
FPGA Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Deep Learning on FPGA Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

iii

Contents



Workflow and APIS
5

Prototype Deep Learning Networks on FPGA and SoCs Workflow . . . . . . . 5-2

Estimate Performance of Deep Learning Network Running with Bitstream
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4

Estimate Performance of Deep Learning Network by Using Custom
Processor Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5

Profile Inference Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6

Multiple Frame Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
Input DDR Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
Output DDR Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
Manually Enable Multiple Frame Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10

Fast MATLAB to FPGA Connection Using LIBIIO/Ethernet
6

LIBIIO/Ethernet Connection Based Deployment . . . . . . . . . . . . . . . . . . . . 6-2
Ethernet Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
Configure your LIBIIO/Ethernet Connection . . . . . . . . . . . . . . . . . . . . . . . 6-2
LIBIIO/Ethernet Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2

Networks and Layers
7

Supported Networks, Layers and Boards . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
Supported Pretrained Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
Supported Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6
Supported Boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-13

Custom Processor Configuration Workflow
8

Custom Processor Configuration Workflow . . . . . . . . . . . . . . . . . . . . . . . . . 8-2

iv Contents



Custom Processor Code Generation Workflow
9

Generate Custom Bitstream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2
Intel Bitstream Resource Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3
Xilinx Bitstream Resource Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3

Generate Custom Processor IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4

Featured Examples
10

Get Started with Deep Learning FPGA Deployment on Intel Arria 10 SoC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2

Get Started with Deep Learning FPGA Deployment on Xilinx ZCU102 SoC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-5

Logo Recognition Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-8

Deploy Transfer Learning Network for Lane Detection . . . . . . . . . . . . . 10-13

Image Category Classification by Using Deep Learning . . . . . . . . . . . . 10-17

Defect Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-23

Profile Network for Performance Improvement . . . . . . . . . . . . . . . . . . . 10-32

Bicyclist and Pedestrian Classification by Using FPGA . . . . . . . . . . . . . 10-36

Visualize Activations of a Deep Learning Network by Using LogoNet . 10-41

Authoring a Reference Design for Live Camera Integration with Deep
Learning Processor IP Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-47

Run a Deep Learning Network on FPGA with Live Camera Input . . . . . 10-52

Running Convolution-Only Networks by using FPGA Deployment . . . . 10-61

Accelerate Prototyping Workflow for Large Networks by using Ethernet
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-66

Create Series Network for Quantization . . . . . . . . . . . . . . . . . . . . . . . . . 10-72

Vehicle Detection Using YOLO v2 Deployed to FPGA . . . . . . . . . . . . . . . 10-76

Custom Deep Learning Processor Generation to Meet Performance
Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-84

v



Deep Learning Quantization
11

Quantization of Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2
Precision and Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2
Histograms of Dynamic Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2

Quantization Workflow Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-9

Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-10
Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-10

Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-12
Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-12

Code Generation and Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-15

Deploy Quantized Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-17
Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-17
Create Modified Series Network by Using Transfer Learning . . . . . . . . 11-17
Create Quantized Network Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-17
Load Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-17
Calibrate Quantized Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-17
Create Target Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-18
Create Workflow Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-18
Compile Quantized Series Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-18
Program Bitstream onto FPGA and Download Network Weights . . . . . . 11-18
Load the Example Images and Run the Prediction . . . . . . . . . . . . . . . . . 11-19

Quantize Neural Network for FPGA Execution Environment . . . . . . . . 11-22
Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-22
Load Pretrained Series Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-22
Define Calibration and Validation Data Sets . . . . . . . . . . . . . . . . . . . . . 11-22
Create Quantized Network Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-23
Calibrate Quantized Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-23
Create Target Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-23
Define Metric Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-23
Create dlQuantizationOptions Object . . . . . . . . . . . . . . . . . . . . . . . . . . 11-24
Validate Quantized Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-24
View Performance of Quantized Neural Network . . . . . . . . . . . . . . . . . 11-27

Deep Learning Processor IP Core User Guide
12

Deep Learning Processor IP Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2

Compiler Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-3
External Memory Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-3

External Memory Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-4
Key Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-4

vi Contents



Convolution Module External Memory Data Format . . . . . . . . . . . . . . . . 12-4
Fully Connected Module External Memory Data Format . . . . . . . . . . . . . 12-5

Deep Learning Processor Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . 12-7

vii





What is Deep Learning?

• “Introduction to Deep Learning” on page 1-2
• “Training Process” on page 1-3
• “Convolutional Neural Networks” on page 1-5
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Introduction to Deep Learning
Deep learning is a branch of machine learning that teaches computers to do what comes naturally to
humans: learn from experience. The learning algorithms use computational methods to “learn”
information directly from data without relying on a predetermined equation as model. Deep learning
uses neural networks to learn useful representations of data directly from images. It is a specialized
form of machine learning that can be used for applications such as classifying images, detecting
objects, recognizing speech, and describing the content. The relevant features are automatically
extracted from the images. The deep learning algorithms can be applied to supervised and
unsupervised learning. These algorithms scale with data, that is, the performance of the network
improves with size of the data.

1 What is Deep Learning?
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Training Process
You can train deep learning neural networks for classification tasks by using methods such as training
from scratch, or by transfer learning, or by feature extraction.

Training from Scratch
Training a deep learning neural network from scratch requires a large amount of labeled data.To
create the network architecture by using Neural Network Toolbox™, you can use the built-in layers,
define your own layers, or import layers from Caffe models. The neural network is then trained by
using the large amounts of labeled data. Use trained network for predicting or classifying the
unlabeled data. These networks can take few days or couple of weeks to train. Therefore, it is not a
commonly used method for training networks.

For more information, see “Get Started with Transfer Learning”.

Transfer Learning
Transfer learning is used for cases where there is lack of labeled data. The existing network
architectures, trained for scenarios with large amounts of labeled data, are used for this approach.
The parameters of pretrained networks are modified to fit the unlabeled data. Therefore, transfer
learning is used for transferring knowledge across various tasks. You can train or modify these
networks faster so it is the most widely used training approach for deep learning applications.

For more information, see “Get Started with Transfer Learning”

 Training Process
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Feature Extraction
Layers in deep learning networks are trained for extracting features from the input data. This
approach uses the network as a feature extractor. The features extracted after the training process
can be put into various machine learning models such as Support Vector Machines (SVM).

1 What is Deep Learning?
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Convolutional Neural Networks
Convolutional neural networks (CNNs) are one of the most commonly used deep learning
networks.They are feedforward artificial neural networks inspired by the animal's visual cortex.
These networks are designed for data with spatial and temporal information.Therefore, convolutional
neural networks are widely used in image and video recognition, speech recognition, and natural
language processing. The architecture of convolution neural network consists of various layers which
convert the raw input pixels into a class score.

For more details, see “Learn About Convolutional Neural Networks”.

You can train CNNs from scratch, by transfer learning, or by feature extraction. You can then use the
trained network for classification or regression applications.

For more details on training CNNs, see “Pretrained Deep Neural Networks” .

For more details on deep learning, training process, and CNNs, see Deep Learning Onramp.

 Convolutional Neural Networks
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Deep Learning Processor Architecture
The software provides a generic deep learning processor IP core that is target-independent and can
be deployed to any custom platform that you specify. The processor can be reused and shared to
accommodate deep neural networks that have various layer sizes and parameters. Use this processor
to rapidly prototype deep neural networks from MATLAB, and then deploy the network to FPGAs.

This figure shows the deep learning processor architecture.

To illustrate the deep learning processor architecture, consider an image classification example.

DDR External Memory
You can store the input images, the weights, and the output images in the external DDR memory. The
processor consists of four AXI4 Master interfaces that communicate with the external memory. Using
one of the AXI4 Master interfaces, you can load the input images onto the Block RAM (BRAM). The
Block RAM provides the activations to the Generic Convolution Processor.

Generic Convolution Processor
The Generic Convolution Processor performs the equivalent operation of one convolution
layer. Using another AXI4 Master interface, the weights for the convolution operation are provided to
the Generic Convolution Processor. The Generic Convolution Processor then performs
the convolution operation on the input image and provides the activations for the Activation
Normalization. The processor is generic because it can support tensors and shapes of various
sizes.

2 Deep Learning Processor
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Activation Normalization
Based on the neural network that you provide, the Activation Normalization module serves the
purpose of adding the ReLU nonlinearity, a maxpool layer, or performs Local Response Normalization
(LRN). You see that the processor has two Activation Normalization units. One unit follows the
Generic Convolution Processor. The other unit follows the Generic FC Processor.

Conv Controller (Scheduling)
Depending on the number of convolution layers that you have in your pretrained network, the Conv
Controller (Scheduling) acts as ping-pong buffers. The Generic Convolution Processor
and Activation Normalization can process one layer at a time. To process the next layer, the
Conv Controller (Scheduling) moves back to the BRAM and then performs the convolution and
activation normalization operations for all convolution layers in the network.

Generic FC Processor
The Generic FC Processor performs the equivalent operation of one fully-connected layer (FC).
Using another AXI4 Master interface, the weights for the fully-connected layer are provided to the
Generic FC Processor. The Generic FC Processor then performs the fully-connected layer
operation on the input image and provides the activations for the Activation Normalization
module. This processor is also generic because it can support tensors and shapes of various sizes.

FC Controller (Scheduling)
The FC Controller (Scheduling) works similar to the Conv Controller (Scheduling). The
FC Controller (Scheduling) coordinates with the FIFO to act as ping-pong buffers for
performing the fully-connected layer operation and Activation Normalization depending on the
number of FC layers, and ReLU, maxpool, or LRN features that you have in your neural network. After
the Generic FC Processor and Activation Normalization modules process all the frames in
the image, the predictions or scores are transmitted through the AXI4 Master interface and stored in
the external DDR memory.

Deep Learning Processor Applications
One application of the custom deep learning processor IP core is the MATLAB controlled deep
learning processor. To create this processor, integrate the deep learning processor IP with the HDL
Verifier™ MATLAB as AXI Master IP by using the AXI4 slave interface. Through a JTAG or PCI express
interface, you can import various pretrained neural networks from MATLAB, execute the operations
specified by the network in the deep learning processor IP, and return the classification results to
MATLAB.

For more information, see “MATLAB Controlled Deep Learning Processor” on page 3-2.

 Deep Learning Processor Architecture
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MATLAB Controlled Deep Learning Processor
To rapidly prototype the deep learning networks on FPGAs from MATLAB, use a MATLAB controlled
deep learning processor. The processor integrates the generic deep learning processor with the HDL
Verifier MATLAB as AXI Master IP. For more information on:

• Generic deep learning processor IP, see “Deep Learning Processor Applications” on page 2-3 .
• MATLAB as AXI Master IP, see “Set Up for MATLAB AXI Master” (HDL Verifier) .

You can use this processor to run neural networks with various inputs, weights, and biases on the
same FPGA platform because the deep learning processor IP core can handle tensors and shapes of
any sizes. Before you use the MATLAB as AXI Master, make sure that you have installed the HDL
Verifier support packages for the FPGA boards. This figure shows the MATLAB controlled deep
learning processor architecture.

To integrate the generic deep learning processor IP with the MATLAB as AXI Master, use the AXI4
Slave interface of the deep learning processor IP core. By using a JTAG or PCI express interface, the
IP responds to read or write commands from MATLAB. Therefore, you can use the MATLAB
controlled deep learning processor to deploy the deep learning neural network to the FPGA boards
from MATLAB, perform operations specified by the network architecture, and then return the
predicted results to MATLAB. Following example illustrate how to deploy the pretrained series
network, AlexNet, to an Intel® Arria® 10 SoC development kit.

3 Applications and Examples
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Deep Learning on FPGA Overview

• “Deep Learning on FPGA Workflow” on page 4-2
• “Deep Learning on FPGA Solution and Workflows” on page 4-4
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Deep Learning on FPGA Workflow
This figure illustrates deep learning on FPGA workflow.

To use the workflow:

1 Load deep learning neural network

You can load the various deep learning neural networks such as Alexnet, VGG and GoogleNet
onto the MATLAB framework. When you compile the network, the network parameters are saved
into a structure that consists of NetConfigs and layerConfigs. NetConfigs consists of the
weights and biases of the trained network. layerConfig consists of various configuration values
of the trained network.

2 Modify pretrained neural network on MATLAB using transfer learning

The internal network developed on the MATLAB framework is trained and modified according to
the parameters of the external neural network. See also “Get Started with Transfer Learning”.

3 Compile user network

Compilation of the user network usually begins with validating the architecture, types of layers
present , data type of input and output parameters, and maximum number of activations. This
FPGA solution supports series network architecture with data types of single and int16. For more
details, see "Product Description". If the user network features are different, the compiler
produces an error and stops. The compiler also performs sanity check by using weight
compression and weight quantization.

4 Deploy on target FPGA board

By using specific APIs and the NetConfigs and layerConfigs, deploying the compiled
network converts the user-trained network into a fixed bitstream and then programs the
bitstream on the target FPGA.

4 Deep Learning on FPGA Overview
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5 Predict outcome

To classify objects in the input image, use the deployed framework on the FPGA board.

See Also
“Deep Learning on FPGA Solution and Workflows” on page 4-4

 Deep Learning on FPGA Workflow
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Deep Learning on FPGA Solution and Workflows
The figure illustrates the MATLAB solution for implementing deep learning on FPGA.

The FPGA deep learning solution provides an end to end solution that allows you to estimate,
compile, profile and debug your custom pretrained series network. You can also generate a custom
deep learning processor IP. The estimator is used for estimating the performance of the deep learning
framework in terms of speed. The compiler converts the pretrained deep learning network for the
current application for deploying it on the intended target FPGA boards.

To learn more about the deep learning processor IP, see “Deep Learning Processor IP Core” on page
12-2 .

FPGA Advantages
FPGAs provide advantages, such as :

• High performance
• Flexible interfacing
• Data parallelism
• Model parallelism
• Pipeline parallelism

Deep Learning on FPGA Workflows
To run certain Deep Learning on FPGA tasks, see the information listed in this table.

Task Workflow

4 Deep Learning on FPGA Overview
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Run a pretrained series network on your target
FPGA board.

“Prototype Deep Learning Networks on FPGA
and SoCs Workflow” on page 5-2

Obtain the performance of your pretrained series
network for a preconfigured deep learning
processor.

“Estimate Performance of Deep Learning
Network Running with Bitstream” on page 5-4

Customize the deep learning processor to meet
your area or performance constraints.

“Estimate Performance of Deep Learning
Network by Using Custom Processor
Configuration” on page 5-5

Generate a custom deep learning processor for
your FPGA.

“Generate Custom Bitstream” on page 9-2

Learn about the benefits of quantizing your
pretrained series networks.

“Quantization of Deep Neural Networks” on page
11-2

Compare the accuracy of your quantized
pretrained series networks against your single
data type pretrained series network.

“Validation” on page 11-12

Run a quantized pretrained series network on
your target FPGA board.

“Code Generation and Deployment” on page 11-
15

 Deep Learning on FPGA Solution and Workflows
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Workflow and APIS

• “Prototype Deep Learning Networks on FPGA and SoCs Workflow” on page 5-2
• “Estimate Performance of Deep Learning Network Running with Bitstream” on page 5-4
• “Estimate Performance of Deep Learning Network by Using Custom Processor Configuration”

on page 5-5
• “Profile Inference Run” on page 5-6
• “Multiple Frame Support” on page 5-9
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Prototype Deep Learning Networks on FPGA and SoCs
Workflow

To prototype and deploy your custom series deep learning network, create an object of class
dlhdl.Workflow. Use this object to accomplish tasks such as:

• Compile and deploy the deep learning network on specified target FPGA or SoC board by using
the deploy function.

• Estimate the speed of the deep learning network in terms of number of cycles by using the
estimate function.

• Execute the deployed deep learning network and predict the classification of input images by
using the predict function.

• Calculate the speed and profile of the deployed deep learning network by using the predict
function. Set the Profile parameter to on.

This figure illustrates the workflow to deploy your deep learning network to the FPGA boards.
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See Also
dlhdl.Target | dlhdl.Workflow

More About
• “Get Started with Deep Learning FPGA Deployment on Xilinx ZCU102 SoC” on page 10-5

 Prototype Deep Learning Networks on FPGA and SoCs Workflow
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Estimate Performance of Deep Learning Network Running with
Bitstream

1 Create an object of class workflow by using the dlhdl.Workflow class.
2 Set the deep learning and bitstream for the workflow object.
3 Call the estimate function for the workflow object.

The speed and latency are stored in a structure struct and displayed on the screen.

For example:
snet = vgg19;
hW = dlhdl.Workflow('Network', snet, 'Bitstream', 'arria10soc_single');
result = hW.estimate('Performance');

The result of the estimation is:

 
              Deep Learning Processor Estimator Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                  172441964                  1.14961                       1          172441964              0.9
    conv_module          162622207                  1.08415 
        conv1_1            4528942                  0.03019 
        conv1_2           17788981                  0.11859 
        pool1              2360417                  0.01574 
        conv2_1            8510437                  0.05674 
        conv2_2           15432208                  0.10288 
        pool2              1242064                  0.00828 
        conv3_1            7660645                  0.05107 
        conv3_2           14177125                  0.09451 
        conv3_3           14177125                  0.09451 
        conv3_4           14177125                  0.09451 
        pool3               671713                  0.00448 
        conv4_1            6957812                  0.04639 
        conv4_2           13621492                  0.09081 
        conv4_3           13621492                  0.09081 
        conv4_4           13621492                  0.09081 
        pool4               391652                  0.00261 
        conv5_1            3396733                  0.02264 
        conv5_2            3396733                  0.02264 
        conv5_3            3396733                  0.02264 
        conv5_4            3396733                  0.02264 
        pool5                94553                  0.00063 
    fc_module              9819757                  0.06547 
        fc6                8160258                  0.05440 
        fc7                1331586                  0.00888 
        fc8                 327913                  0.00219 
 * The clock frequency of the DL processor is: 150MHz
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Estimate Performance of Deep Learning Network by Using
Custom Processor Configuration

1 Create a custom processor configuration object of class dlhdl.ProcessorConfig.
2 Create an object of class workflow by using the dlhdl.Workflow class.
3 Set the deep learning network and processor configuration for the workflow object.
4 Call the estimate function for the workflow object.

The speed and latency is stored in a structure struct and displayed on the screen.

For example:
hPC = dlhdl.ProcessorConfig;
snet = vgg19;
hW = dlhdl.Workflow('Network', snet, 'ProcessorConfig',hPC);
result = hW.estimate('Performance');

The result of the estimation is:

              Deep Learning Processor Estimator Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                  202770372                  1.01385                       1          202770372              1.0
    conv_module          158812469                  0.79406 
        conv1_1            2022004                  0.01011 
        conv1_2           15855549                  0.07928 
        pool1              2334753                  0.01167 
        conv2_1            7536365                  0.03768 
        conv2_2           14837392                  0.07419 
        pool2              1446960                  0.00723 
        conv3_1            7950445                  0.03975 
        conv3_2           14365933                  0.07183 
        conv3_3           14365933                  0.07183 
        conv3_4           14365933                  0.07183 
        pool3               930145                  0.00465 
        conv4_1            7073684                  0.03537 
        conv4_2           13761300                  0.06881 
        conv4_3           13761300                  0.06881 
        conv4_4           13761300                  0.06881 
        pool4               572644                  0.00286 
        conv5_1            3432645                  0.01716 
        conv5_2            3432645                  0.01716 
        conv5_3            3432645                  0.01716 
        conv5_4            3432645                  0.01716 
        pool5               140249                  0.00070 
    fc_module             43957903                  0.21979 
        fc6               36535923                  0.18268 
        fc7                5965299                  0.02983 
        fc8                1456681                  0.00728 
 * The clock frequency of the DL processor is: 200MHz
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Profile Inference Run
View the network prediction and performance data for the layers, convolution module and fully
connected modules in your pretrained series network. The example shows how to retrieve the
prediction and profiler results for the VGG-19 network.

1 Create an object of class Workflow by using the dlhdl.Workflow class.
2 Set a pretrained deep learning network and bitstream for the workflow object.
3 Create an object of class dlhdl.Target and specify the target vendor and interface.
4 To deploy the network on a specified target FPGA board, call the deploy method for the

workflow object.
5 Call the predict function for the workflow object. Provide an array of images as the

InputImage parameter. Provide arguments to turn on the profiler.

The labels classifying the images are stored in a structure struct and displayed on the screen.
The performance parameters of speed and latency are returned in a structure struct.

Use this image to run the code:

snet = vgg19;
hT = dlhdl.Target('Intel');
hW = dlhdl.Workflow('Net', snet, 'Bitstream', 'arria10soc_single','Target',hT);
hW.deploy;
image = imread('zebra.jpeg');
inputImg = imresize(image, [224, 224]);
imshow(inputImg);
[prediction, speed] = hW.predict(single(inputImg),'Profile','on');
[val, idx] = max(prediction);
snet.Layers(end).ClassNames{idx}

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                  166206640                  1.10804                       1          166206873              0.9
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    conv_module          156100737                  1.04067 
        conv1_1            2174602                  0.01450 
        conv1_2           15580687                  0.10387 
        pool1              1976185                  0.01317 
        conv2_1            7534356                  0.05023 
        conv2_2           14623885                  0.09749 
        pool2              1171628                  0.00781 
        conv3_1            7540868                  0.05027 
        conv3_2           14093791                  0.09396 
        conv3_3           14093717                  0.09396 
        conv3_4           14094381                  0.09396 
        pool3               766669                  0.00511 
        conv4_1            6999620                  0.04666 
        conv4_2           13725380                  0.09150 
        conv4_3           13724671                  0.09150 
        conv4_4           13725125                  0.09150 
        pool4               465360                  0.00310 
        conv5_1            3424060                  0.02283 
        conv5_2            3423759                  0.02283 
        conv5_3            3424758                  0.02283 
        conv5_4            3424461                  0.02283 
        pool5               113010                  0.00075 
    fc_module             10105903                  0.06737 
        fc6                8397997                  0.05599 
        fc7                1370215                  0.00913 
        fc8                 337689                  0.00225 
 * The clock frequency of the DL processor is: 150MHz

ans =

    'zebra'
 

The profiler data returns these parameters and their values:

• LastLayerLatency(cycles)- Total number of clock cycles for layer or module execution.
• Clock frequency- Clock frequency information is retrieved from the bitstream that was used to

deploy the network to the target board. For example, the profiler returns * The clock
frequency of the DL processor is: 150MHz. The clock frequency of 150 MHz is retrieved
from the arria10soc_single bitstream.

• LastLayerLatency(seconds)- Total number of seconds for layer or module execution. The total
time is calculated as LastLayerLatency(cycles)/Clock Frequency. For example the
conv_module LastLayerLatency(seconds) is calculated as 156100737/(150*10^6).

• FramesNum- Total number of input frames to the network. This value will be used in the
calculation of Frames/s.

• Total Latency- Total number of clock cycles to execute all the network layers and modules for
FramesNum.

• Frames/s- Number of frames processed in one second by the network. The total Frames/s is
calculated as (FramesNum*Clock Frequency)/Total Latency. For example the Frames/s in
the example is calculated as (1*150*10^6)/166206873.
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See Also
dlhdl.Target | dlhdl.Workflow | predict

More About
• “Prototype Deep Learning Networks on FPGA and SoCs Workflow” on page 5-2
• “Profile Network for Performance Improvement” on page 10-32
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Multiple Frame Support
Deep Learning HDL Toolbox supports multiple frame mode that enables you to write multiple images
into the Double Data Rate (DDR) memory and read back multiple results at the same time. To
improve the performance of your deployed deep learning networks, use multiple frame mode.

Input DDR Format
Formatting the input images to meet the multiple frame input DDR format requires:

• The start address of the input data for the DDR
• The DDR offset for a single input image frame

This information is automatically generated by the compile method. For more information on the
generated DDR address offsets, see “Compiler Output” on page 12-3.

You can also specify the maximum number of input frames as an optional argument in the compile
method. For more information, see “Generate DDR Memory Offsets Based On Number of Input
Frames”.

Output DDR Format
Retrieving the results for multiple image inputs from the output area of the DDR requires:

• The start address of the output area of the DDR
• The DDR offset of a single result

The output results have to be formatted to be a multiple of the FC output feature size. The
information and formatting are automatically generated by the compile method. For more
information on the generated DDR address offsets, see “Compiler Output” on page 12-3.

 Multiple Frame Support
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Manually Enable Multiple Frame Mode
After the deep learning network has been deployed, you can manually enable the multiple frame
mode by writing the number of frames through a network configuration (NC) port. To manually enter
the multiple frame mode at the MATLAB command line enter:

dnnfpga.hwutils.writeSignal(1, dnnfpga.hwutils.numTo8Hex(addrMap('nc_op_image_count')),15,hT);

The function addrMap('nc_op_image_count') returns the AXI register address for
nc_op_image_count, 15 is the number of images and hT represents the dlhdl.Target class that
contains the board definition and board interface definition. For more information about the AXI
register addresses, see “Deep Learning Processor Register Map” on page 12-7.
compile | dlhdl.Target | dlhdl.Workflow

More About
• “Prototype Deep Learning Networks on FPGA and SoCs Workflow” on page 5-2
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Fast MATLAB to FPGA Connection Using
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LIBIIO/Ethernet Connection Based Deployment
In this section...
“Ethernet Interface” on page 6-2
“Configure your LIBIIO/Ethernet Connection” on page 6-2
“LIBIIO/Ethernet Performance” on page 6-2

Ethernet Interface
The Ethernet interface leverages the ARM processor to send and receive information from the design
running on the FPGA. The ARM processor runs on a Linux operating system. You can use the Linux
operating system services to interact with the FPGA. When using the Ethernet interface, the
bitstream is downloaded to the SD card. The bitstream is persistent through power cycles and is
reprogrammed each time the FPGA is turned on. The ARM processor is configured with the correct
device tree when the bitstream is programmed.

To communicate with the design running on the FPGA, MATLAB leverages the Ethernet connection
between the host computer and ARM processor. The ARM processor runs a LIBIIO service, which
communicates with a datamover IP in the FPGA design. The datamover IP is used for fast data
transfers between the host computer and FPGA, which is useful when prototyping large deep
learning networks that would have long transfer times over JTAG. The ARM processor generates the
read and write transactions to access memory locations in both the onboard memory and deep
learning processor.

This figure shows the high-level architecture of the Ethernet interface.

Configure your LIBIIO/Ethernet Connection
You can configure your dlhdl.Workflow object hardware interface to Ethernet at the time of the
workflow object creation. For more information, see “Create Target Object That Has an Ethernet
Interface and Set IP Address”.

LIBIIO/Ethernet Performance
The improvement in performance speed of JTAG compared to LIBIIO/Ethernet is listed in this table.

6 Fast MATLAB to FPGA Connection Using LIBIIO/Ethernet
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Transfer Speed JTAG IIO Speedup
Write Transfer Speed 225 kB/s 33 MB/s Approximately 150x
Read Transfer Speed 162 kB/s 32 MB/s Approximately 200x

dlhdl.Target

More About
• “Accelerate Prototyping Workflow for Large Networks by using Ethernet” on page 10-66
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Supported Networks, Layers and Boards
In this section...
“Supported Pretrained Networks” on page 7-2
“Supported Layers” on page 7-6
“Supported Boards” on page 7-13

Supported Pretrained Networks
Deep Learning HDL Toolbox supports code generation for series convolutional neural networks
(CNNs or ConvNets). You can generate code for any trained convolutional neural network whose
computational layers are supported for code generation. See “Supported Layers” on page 7-6. You
can use one of the pretrained networks listed in the table and generate code for your target Intel or
Xilinx® FPGA boards.

Networ
k

Networ
k
Descrip
tion

Type Single Data Type (with
Shipping Bitstreams)

INT8 data type (with
Shipping Bitstreams)

Applicat
ion
Area

   ZCU102 ZC706 Arria10
SoC

ZCU102 ZC706 Arria10
SoC

Classific
ation

AlexNet AlexNet
convoluti
onal
neural
network.

Series
Network

Yes Yes Yes Yes Yes Yes Classific
ation

LogoNet Logo
recogniti
on
network
(LogoNe
t) is a
MATLAB
develope
d logo
identific
ation
network.
For more
informati
on, see
“Logo
Recognit
ion
Network
”.

Series
Network

Yes Yes Yes Yes Yes Yes Classific
ation
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MNIST MNIST
Digit
Classific
ation.

Series
Network

Yes Yes Yes Yes Yes Yes Regressi
on

Lane
detectio
n

LaneNet
convoluti
onal
neural
network.
For more
informati
on, see
“Deploy
Transfer
Learning
Network
for Lane
Detectio
n” on
page 10-
13

Series
Network

Yes Yes Yes Yes Yes Yes Classific
ation

VGG-16 VGG-16
convoluti
onal
neural
network.
For the
pretrain
ed
VGG-16
model,
see
vgg16.

Series
Network

No.
Network
exceeds
PL DDR
memory
size

No.
Network
exceeds
FC
module
memory
size.

Yes Yes No.
Network
exceeds
FC
module
memory
size.

Yes Classific
ation

VGG-19 VGG-19
convoluti
onal
neural
network.
For the
pretrain
ed
VGG-19
model,
see
vgg19 .

Series
Network

No.
Network
exceeds
PL DDR
memory
size

No.
Network
exceeds
FC
module
memory
size.

Yes Yes No.
Network
exceeds
FC
module
memory
size.

Yes Classific
ation
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Darknet-
19

Darknet-
19
convoluti
onal
neural
network.
For the
pretrain
ed
darknet-
19
model,
see
darknet
19.

Series
Network

Yes Yes Yes No. the
network
contains
a
globalA
verageP
ooling
layer
that is
not
supporte
d for
INT8
quantiza
tion.

No. the
network
contains
a
globalA
verageP
ooling
layer
that is
not
supporte
d for
INT8
quantiza
tion.

No. the
network
contains
a
globalA
verageP
ooling
layer
that is
not
supporte
d for
INT8
quantiza
tion.

Classific
ation

Radar
Classific
ation

Convolut
ional
neural
network
that uses
micro-
Doppler
signatur
es to
identify
and
classify
the
object.
For more
informati
on, see
“Bicyclis
t and
Pedestri
an
Classific
ation by
Using
FPGA”
on page
10-36.

Series
Network

Yes Yes Yes No. the
network
contains
a
Average
Pooling
layer
that is
not
supporte
d for
INT8
quantiza
tion.

No. the
network
contains
a
Average
Pooling
layer
that is
not
supporte
d for
INT8
quantiza
tion.

No. the
network
contains
a
Average
Pooling
layer
that is
not
supporte
d for
INT8
quantiza
tion.

Classific
ation
and
Software
Defined
Radio
(SDR)
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Defect
Detectio
n
snet_de
fnet

snet_de
fnet is
a custom
AlexNet
network
used to
identify
and
classify
defects.
For more
informati
on, see
“Defect
Detectio
n” on
page 10-
23.

Series
Network

Yes Yes Yes Yes Yes Yes Classific
ation

Defect
Detectio
nsnet_b
lemdetn
et

snet_bl
emdetne
t is a
custom
convoluti
onal
neural
network
used to
identify
and
classify
defects.
For more
informati
on, see
“Defect
Detectio
n” on
page 10-
23.

Series
Network

Yes Yes Yes Yes Yes Yes Classific
ation
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YOLO v2
Vehicle
Detectio
n

You look
only
once
(YOLO)
is an
object
detector
that
decodes
the
predictio
ns from
a
convoluti
onal
neural
network
and
generate
s
boundin
g boxes
around
the
objects.
For more
informati
on, see
“Vehicle
Detectio
n Using
YOLO v2
Deploye
d to
FPGA”
on page
10-76

Series
Network
based

Yes Yes Yes Yes Yes Yes Object
detectio
n

Supported Layers
The following layers are supported by Deep Learning HDL Toolbox.

Input Layers

Layer Layer Type Hardware
(HW) or
Software(SW)

Description and
Limitations

INT8 Compatible

imageInputLayer

SW An image input layer
inputs 2-D images to a
network and applies
data normalization.

Yes. Runs as single
datatype in SW.

7 Networks and Layers
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Convolution and Fully Connected Layers

Layer Layer Type Hardware
(HW) or
Software(SW)

Description and
Limitations

INT8 Compatible

convolution2dLayer

HW A 2-D convolutional
layer applies sliding
convolutional filters to
the input.

These limitations apply
when generating code
for a network using this
layer:

• Filter size must be
1-12 and square. For
example [1 1] or [12
12].

• Stride size must be
1,2 or 4 and square.

• Padding size must be
in the range 0-8.

• Dilation factor must
be [1 1].

Yes

 Supported Networks, Layers and Boards
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groupedConvolution
2dLayer

HW A 2-D grouped
convolutional layer
separates the input
channels into groups
and applies sliding
convolutional filters.
Use grouped
convolutional layers for
channel-wise separable
(also known as depth-
wise separable)
convolution.

These limitations apply
when generating code
for a network using this
layer:

• Filter size must be
1-12 and square. For
example [1 1] or [12
12].

• Stride size must be
1,2 or 4 and square.

• Padding size must be
in the range 0-8.

• Dilation factor must
be [1 1].

• Number of groups
must be 1 or 2.

Yes

fullyConnectedLaye
r

HW A fully connected layer
multiplies the input by a
weight matrix, and then
adds a bias vector.

These limitations apply
when generating code
for a network using this
layer:

• The layer input and
output size are
limited by the values
specified in
“InputMemorySize”
and
“OutputMemorySize
”.

Yes
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Activation Layers

Layer Layer Type Hardware
(HW) or
Software(SW)

Description INT8 Compatible

reluLayer
HW A ReLU layer performs

a threshold operation to
each element of the
input where any value
less than zero is set to
zero.

A clipped ReLU layer is
supported only when it
is preceded by a
convolution layer.

Yes

leakyReluLayer
HW A leaky ReLU layer

performs a threshold
operation where any
input value less than
zero is multiplied by a
fixed scalar.

A leaky ReLU layer is
supported only when it
is preceded by a
convolution layer.

No

clippedReluLayer

HW A clipped ReLU layer
performs a threshold
operation where any
input value less than
zero is set to zero and
any value above the
clipping ceiling is set to
that clipping ceiling
value.

A clipped ReLU layer is
supported only when it
is preceded by a
convolution layer.

No

Normalization, Dropout, and Cropping Layers

Layer Layer Type Hardware
(HW) or
Software(SW)

Description INT8 Compatible
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batchNormalization
Layer

HW A batch normalization
layer normalizes each
input channel across a
mini-batch.

A batch normalization
layer is only supported
only when it is preceded
by a convolution layer.

Yes

crossChannelNormal
izationLayer

HW A channel-wise local
response (cross-
channel) normalization
layer carries out
channel-wise
normalization.

The
WindowChannelSize
must be in the range of
3-9 for code generation.

Yes. Runs as single
datatype in HW.

dropoutLayer
NoOP on inference A dropout layer

randomly sets input
elements to zero with a
given probability.

Yes

Pooling and Unpooling Layers

Layer Layer Type Hardware
(HW) or
Software(SW)

Description INT8 Compatible

7 Networks and Layers
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maxPooling2dLayer

HW A max pooling layer
performs down
sampling by dividing the
input into rectangular
pooling regions and
computing the
maximum of each
region.

These limitations apply
when generating code
for a network using this
layer:

• Pool size must be
1-12and square. For
example [1 1] or [12
12].

• Stride size must be
1-7 and square.

• Padding size must be
in the range 0-2.
Padding size can
only be used when
the pool size is 3-
by-3.

Yes

averagePooling2dLa
yer

HW An average pooling
layer performs down
sampling by dividing the
input into rectangular
pooling regions and
computing the average
values of each region.

These limitations apply
when generating code
for a network using this
layer:

• Pool size must be
1-12 and square. For
example [3 3]

• Stride size must be
1-7 and square.

• Padding size must be
in the range 0-2.
Padding size can
only be used when
the pool size is 3-
by-3.

No
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globalAveragePooli
ng2dLayer

HW A global average
pooling layer performs
down sampling by
computing the mean of
the height and width
dimensions of the input.

These limitations apply
when generating code
for a network using this
layer:

• Pool size value must
be in the range 1-12
and be square. For
example, [1 1] or [12
12].

• Total activation pixel
size must be smaller
than the deep
learning processor
convolution module
input memory size.
For more
information, see
“InputMemorySize”

No

Output Layer

Layer Layer Type Hardware
(HW) or
Software(SW)

Description INT8 Compatible

softmax
SW A softmax layer applies

a softmax function to
the input.

Yes. Runs as single
datatype in SW.

classificationLaye
r

SW A classification layer
computes the cross-
entropy loss for multi
class classification
issues with mutually
exclusive classes.

Yes

regressionLayer

SW A regression layer
computes the half-
mean-squared-error loss
for regression
problems.

Yes

7 Networks and Layers
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Keras and ONNX Layers

Layer Layer Type Hardware
(HW) or
Software(SW)

Description INT8 Compatible

nnet.keras.layer.F
lattenCStyleLayer

HW Flatten activations into
1-D layers assuming C-
style (row-major) order.

A
nnet.keras.layer.F
lattenCStyleLayer
is only supported only
when it is followed by a
fully connected layer.

Yes

nnet.keras.layer.Z
eroPadding2dLayer

HW Zero padding layer for
2-D input.

A
nnet.keras.layer.Z
eroPadding2dLayer
is only supported only
when it is followed by a
convolution layer or a
maxpool layer.

Yes

Supported Boards
These boards are supported by Deep Learning HDL Toolbox:

• Xilinx Zynq®-7000 ZC706.
• Intel Arria 10 SoC.
• Xilinx Zynq UltraScale+™ MPSoC ZCU102.

See Also

More About
• “Configure Board-Specific Setup Information”
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Custom Processor Configuration
Workflow
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Custom Processor Configuration Workflow
Estimate the performance of your custom processor configuration by experimenting with the settings
of the deep learning processor convolution and fully connected modules. For more information about
the deep learning processor, see “Deep Learning Processor Architecture” on page 2-2 and for
information about the convolution and fully connected module parameters, see “Module Properties”.

After configuring your custom deep learning processor you can build and generate a custom
bitstream and custom deep learning processor IP core. For more information about the custom deep
learning processor IP core, see “Deep Learning Processor IP Core” on page 12-2.

The image shows the workflow to customize your deep learning processor, estimate the custom deep
learning processor performance and build and generate your custom deep learning processor IP core.

See Also
dlhdl.ProcessorConfig | getModuleProperty | setModuleProperty

More About
• “Deep Learning Processor Architecture” on page 2-2

8 Custom Processor Configuration Workflow
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Custom Processor Code Generation
Workflow

• “Generate Custom Bitstream” on page 9-2
• “Generate Custom Processor IP” on page 9-4

9



Generate Custom Bitstream
To generate a custom bitstream to deploy a deep learning network to your target device, use the
dlhdl.ProcessorConfig object.

1 Create a dlhdl.ProcessorConfig object.

hPC = dlhdl.ProcessorConfig;
2 Setup the tool path to your design tool. For example, to setup the path to the Vivado® design tool,

enter:
hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2019.2\bin\vivado.bat');

3 Generate the custom bitstream.

dlhdl.buildProcessor(hPC);
4 After the bitstream generation is completed, you can locate the bitstream file at cwd\dlhdl_prj

\vivado_ip_prj\vivado_prj.runs\impl_1, where cwd is your current working directory.
The name of the bitstream file is system_top_wrapper.bit. The associated
system_top_wrapper.mat file is located in the top level of the cwd.

To use the generated bitstream for the supported Xilinx boards, you should copy the
system_top_wrapper.bit and system_top_wrapper.mat files to the same folder.

To use the generated bitstream for the supported Intel boards, you should copy the
system_core.rbf, system.mat, system_periph.rbf, and system.sof files to the same
folder.

9 Custom Processor Code Generation Workflow
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5 Deploy the custom bitstream and deep learning network to your target device.
hTarget = dlhdl.Target('Xilinx');
snet = alexnet;
hW = dlhdl.Workflow('Network',snet,'Bitstream','system_top_wrapper.bit','Target',hTarget);
% If your custom bitstream files are in a different folder, use:
% hW = dlhdl.Workflow('Network',snet,'Bitstream',...
'C:\yourfolder\system_top_wrapper.bit','Target',hTarget);
hW.compile;
hW.deploy;

Intel Bitstream Resource Utilization
“Bitstream Resource Utilization” (Deep Learning HDL Toolbox Support Package for Intel FPGA and
SoC Devices)

Xilinx Bitstream Resource Utilization
“Bitstream Resource Utilization” (Deep Learning HDL Toolbox Support Package for Xilinx FPGA and
SoC Devices)

See Also
dlhdl.ProcessorConfig | dlhdl.buildProcessor | dlhdl.Workflow
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Generate Custom Processor IP
The dlhdl.buildProcessor API builds the dlhdl.ProcessorConfig object to generate a custom
processor IP and related code that you can use in your custom reference designs.

1 Create a dlhdl.ProcessorConfig object.

hPC = dlhdl.ProcessorConfig;
2 Setup the tool path to your design tool. For example, to setup the path to the Vivado design tool,

enter:
hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2019.2\bin\vivado.bat');

3 Generate the custom processor IP.

dlhdl.buildProcessor(hPC);

See Also
dlhdl.ProcessorConfig | dlhdl.buildProcessor

More About
• “Deep Learning Processor IP Core” on page 12-2
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Get Started with Deep Learning FPGA Deployment on Intel
Arria 10 SoC

This example shows how to create, compile, and deploy a dlhdl.Workflow object that has a
handwritten character detection series network object by using the Deep Learning HDL Toolbox™
Support Package for Intel FPGA and SoC. Use MATLAB® to retrieve the prediction results from the
target device.

Prerequisites

• Intel Arria™ 10 SoC development kit
• Deep Learning HDL Toolbox™ Support Package for Intel FPGA and SoC
• Deep Learning HDL Toolbox™
• Deep Learning Toolbox™

Create a Folder and Copy Relevant Files

Create a new folder in your current working folder where you have write permission and copy all the
files into this folder.

unzip('dnnfpga_digits.zip');
[newDir, origDir] = cloneSetupDir('dnnfpga_digits');
cd(newDir);

Load the Pretrained SeriesNetwork

To load the pretrained series network, that has been trained on the Modified National Institue
Standards of Technolofy (MNIST) database, enter:

snet = getDigitsNetwork();

To view the layers of the pretrained series network, enter:

analyzeNetwork(snet)

Create Target Object

Create a target object that has a custom name for your target device and an interface to connect your
target device to the host computer. Interface options are JTAG and Ethernet. To use JTAG, install
Intel™ Quartus™ Prime Standard Edition 18.1. Set up the path to your installed Intel Quartus Prime
executable if it is not already set up. For example, to set the toolpath, enter:

% hdlsetuptoolpath('ToolName', 'Altera Quartus II','ToolPath', 'C:\altera\18.1\quartus\bin64');

hTarget = dlhdl.Target('Intel')

hTarget = 
  Target with properties:

       Vendor: 'Intel'
    Interface: JTAG

Create Workflow Object

Create an object of the dlhdl.Workflow class. When you create the object, specify the network and
the bitstream name. Specify the saved pretrained MNIST neural network, snet, as the network. Make
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sure that the bitstream name matches the data type and the FPGA board that you are targeting. In
this example, the target FPGA board is the Intel Arria 10 SOC board and the bitstream uses a single
data type.

hW = dlhdl.Workflow('network', snet, 'Bitstream', 'arria10soc_single','Target',hTarget)

hW = 
  Workflow with properties:

            Network: [1×1 SeriesNetwork]
          Bitstream: 'arria10soc_single'
    ProcessorConfig: []
             Target: [1×1 dlhdl.Target]

Compile the MNIST Series Network

To compile the MNIST series network, run the compile function of the dlhdl.Workflow object.

dn = hW.compile;

### Optimizing series network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "4.0 MB"        
    "OutputResultOffset"        "0x00400000"     "4.0 MB"        
    "SystemBufferOffset"        "0x00800000"     "28.0 MB"       
    "InstructionDataOffset"     "0x02400000"     "4.0 MB"        
    "ConvWeightDataOffset"      "0x02800000"     "4.0 MB"        
    "FCWeightDataOffset"        "0x02c00000"     "4.0 MB"        
    "EndOffset"                 "0x03000000"     "Total: 48.0 MB"

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Intel Arria 10 SoC hardware, run the deploy function of the
dlhdl.Workflow object. This function uses the output of the compile function to program the FPGA
board by using the programming file. It also downloads the network weights and biases. The deploy
function starts programming the FPGA device, displays progress messages, and the time it takes to
deploy the network.

hW.deploy

### Programming FPGA Bitstream using JTAG...
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 12-Jun-2020 15:19:17

Run Prediction for Example Image

To load the example image, execute the predict function of the dlhdl.Workflow object, and then
display the FPGA result, enter:

inputImg = imread('five_28x28.pgm');
imshow(inputImg);
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Run prediction with the profile 'on' to see the latency and throughput results.

[prediction, speed] = hW.predict(single(inputImg),'Profile','on');

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                      49438                  0.00033                       1              49671           3019.9
    conv_module              26288                  0.00018 
        conv_1                6741                  0.00004 
        maxpool_1             4680                  0.00003 
        conv_2                5231                  0.00003 
        maxpool_2             3879                  0.00003 
        conv_3                5817                  0.00004 
    fc_module                23150                  0.00015 
        fc                   23150                  0.00015 
 * The clock frequency of the DL processor is: 150MHz

[val, idx] = max(prediction);
fprintf('The prediction result is %d\n', idx-1);

The prediction result is 5

cd(origDir);

See Also

More About
• “Check Host Computer Connection to FPGA Boards”
• “Create Simple Deep Learning Network for Classification”
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Get Started with Deep Learning FPGA Deployment on Xilinx
ZCU102 SoC

This example shows how to create, compile, and deploy a dlhdl.Workflow object that has a
handwritten character detection series network as the network object by using the Deep Learning
HDL Toolbox™ Support Package for Xilinx FPGA and SoC. Use MATLAB® to retrieve the prediction
results from the target device.

Prerequisites

• Xilinx ZCU102 SoC development kit.
• Deep Learning HDL Toolbox™
• Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC
• Deep Learning Toolbox™

Load the Pretrained Series Network

To load the pretrained series network, that has been trained on the Modified National Institue
Standards of Technolofy (MNIST) database, enter:

snet = getDigitsNetwork();

To view the layers of the pretrained series network, enter:

analyzeNetwork(snet)

Create Target Object

Create a target object that has a custom name for your target device and an interface to connect your
target device to the host computer. Interface options are JTAG and Ethernet.

hTarget = dlhdl.Target('Xilinx','Interface','Ethernet')

hTarget = 
  Target with properties:

       Vendor: 'Xilinx'
    Interface: Ethernet
    IPAddress: '10.10.10.15'
     Username: 'root'
         Port: 22

Create WorkFlow Object

Create an object of the dlhdl.Workflow class. Specify the network and the bitstream name during
the object creation. Specify saved pretrained MNIST neural network, snet, as the network. Make sure
that the bitstream name matches the data type and the FPGA board that you are targeting. In this
example, the target FPGA board is the Xilinx ZCU102 SOC board and the bitstream uses a single data
type.

hW = dlhdl.Workflow('network', snet, 'Bitstream', 'zcu102_single','Target',hTarget)

hW = 
  Workflow with properties:
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            Network: [1×1 SeriesNetwork]
          Bitstream: 'zcu102_single'
    ProcessorConfig: []
             Target: [1×1 dlhdl.Target]

Compile the MNIST Series Network

To compile the MNIST series network, run the compile function of the dlhdl.Workflow object.

dn = hW.compile;

### Optimizing series network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "4.0 MB"        
    "OutputResultOffset"        "0x00400000"     "4.0 MB"        
    "SystemBufferOffset"        "0x00800000"     "28.0 MB"       
    "InstructionDataOffset"     "0x02400000"     "4.0 MB"        
    "ConvWeightDataOffset"      "0x02800000"     "4.0 MB"        
    "FCWeightDataOffset"        "0x02c00000"     "4.0 MB"        
    "EndOffset"                 "0x03000000"     "Total: 48.0 MB"

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Xilinx ZCU102 SoC hardware, run the deploy function of the
dlhdl.Workflow object. This function uses the output of the compile function to program the FPGA
board by using the programming file. It also downloads the network weights and biases. The deploy
function starts programming the FPGA device, displays progress messages, and the time it takes to
deploy the network.

hW.deploy

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 28-Jun-2020 12:37:32

Run Prediction for Example Image

To load the example image, execute the predict function of the dlhdl.Workflow object, and then
display the FPGA result, enter:

inputImg = imread('five_28x28.pgm');
imshow(inputImg);

Run prediction with the profile 'on' to see the latency and throughput results.
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[prediction, speed] = hW.predict(single(inputImg),'Profile','on');

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                      73717                  0.00034                       1              73759           2982.7
    conv_module              27207                  0.00012 
        conv_1                6673                  0.00003 
        maxpool_1             4891                  0.00002 
        conv_2                4999                  0.00002 
        maxpool_2             3569                  0.00002 
        conv_3                7135                  0.00003 
    fc_module                46510                  0.00021 
        fc                   46510                  0.00021 
 * The clock frequency of the DL processor is: 220MHz

[val, idx] = max(prediction);
fprintf('The prediction result is %d\n', idx-1);

The prediction result is 5

See Also

More About
• “Check Host Computer Connection to FPGA Boards”
• “Create Simple Deep Learning Network for Classification”
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Logo Recognition Network
This example shows how to create, compile, and deploy a dlhdl.Workflow object that has Logo
Recognition Network as the network object using the Deep Learning HDL Toolbox™ Support Package
for Xilinx FPGA and SoC. Use MATLAB® to retrieve the prediction results from the target device.

The Logo Recognition Network

Logos assist users in brand identification and recognition. Many companies incorporate their logos in
advertising, documentation materials, and promotions. The logo recognition network (logonet) was
developed in MATLAB® and can recognize 32 logos under various lighting conditions and camera
motions. Because this network focuses only on recognition, you can use it in applications where
localization is not required.

Prerequisites

• Xilinx ZCU102 SoC development kit
• Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC
• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™

Load the Pretrained Series Network

To load the pretrained series network logonet, enter:

snet = getLogoNetwork();

To view the layers of the pretrained series network, enter:

analyzeNetwork(snet)
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Create Target Object

Create a target object that has a custom name for your target device and an interface to connect your
target device to the host computer. Interface options are JTAG and Ethernet. To use JTAG, install
Xilinx™ Vivado™ Design Suite 2019.2. To set the Xilinx Vivado toolpath, enter:

% hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2019.2\bin\vivado.bat');

To create the target object, enter:

hTarget = dlhdl.Target('Xilinx','Interface','Ethernet');

Create WorkFlow Object

Create an object of the dlhdl.Workflow class. When you create the object, specify the network and
the bitstream name. Specify the saved pretrained logonet neural network, snet, as the network.
Make sure that the bitstream name matches the data type and the FPGA board that you are
targeting. In this example the target FPGA board is the Xilinx ZCU102 SOC board. The bitstream
uses a single data type.

hW = dlhdl.Workflow('network', snet, 'Bitstream', 'zcu102_single','Target',hTarget);
% If running on Xilinx ZC706 board, instead of the above command, 
% uncomment the command below.
%
% hW = dlhdl.Workflow('Network', snet, 'Bitstream', 'zc706_single','Target',hTarget);

Compile the Logo Recognition Network

To compile the logo recognition network, run the compile function of the dlhdl.Workflow object.

 Logo Recognition Network
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dn = hW.compile

          offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "24.0 MB"        
    "OutputResultOffset"        "0x01800000"     "4.0 MB"         
    "SystemBufferOffset"        "0x01c00000"     "60.0 MB"        
    "InstructionDataOffset"     "0x05800000"     "12.0 MB"        
    "ConvWeightDataOffset"      "0x06400000"     "32.0 MB"        
    "FCWeightDataOffset"        "0x08400000"     "44.0 MB"        
    "EndOffset"                 "0x0b000000"     "Total: 176.0 MB"

dn = struct with fields:
       Operators: [1×1 struct]
    LayerConfigs: [1×1 struct]
      NetConfigs: [1×1 struct]

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Xilinx ZCU102 SoC hardware, run the deploy function of the
dlhdl.Workflow object. This function uses the output of the compile function to program the FPGA
board by using the programming file. It also downloads the network weights and biases. The deploy
function starts programming the FPGA device, displays progress messages, and the time it takes to
deploy the network.

 hW.deploy

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Loading weights to FC Processor.
### 33% finished, current time is 28-Jun-2020 12:40:14.
### 67% finished, current time is 28-Jun-2020 12:40:14.
### FC Weights loaded. Current time is 28-Jun-2020 12:40:14

Load the Example Image

Load the example image.

image = imread('heineken.png');
inputImg = imresize(image, [227, 227]);
imshow(inputImg);
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Run the Prediction

Execute the predict function on the dlhdl.Workflow object and display the result:

[prediction, speed] = hW.predict(single(inputImg),'Profile','on');

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   38865102                  0.17666                       1           38865144              5.7
    conv_module           34299592                  0.15591 
        conv_1             6955899                  0.03162 
        maxpool_1          3306384                  0.01503 
        conv_2            10396300                  0.04726 
        maxpool_2          1207215                  0.00549 
        conv_3             9269094                  0.04213 
        maxpool_3          1367650                  0.00622 
        conv_4             1774679                  0.00807 
        maxpool_4            22464                  0.00010 
    fc_module              4565510                  0.02075 
        fc_1               2748478                  0.01249 
        fc_2               1758315                  0.00799 
        fc_3                 58715                  0.00027 
 * The clock frequency of the DL processor is: 220MHz

[val, idx] = max(prediction);
snet.Layers(end).ClassNames{idx}
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ans = 
'heineken'

See Also

More About
• “Check Host Computer Connection to FPGA Boards”
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Deploy Transfer Learning Network for Lane Detection
This example shows how to create, compile, and deploy a dlhdl.Workflow object that has a
convolutional neural network. The network can detect and output lane marker boundaries as the
network object using the Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC.
Use MATLAB® to retrieve the prediction results from the target device.

Prerequisites

• Xilinx ZCU102 SoC development kit
• Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC
• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™

Load the Pretrained SeriesNetwork

To load the pretrained series network lanenet, enter:

snet = getLaneDetectionNetwork();

Normalize the Input Layer

To normalize the input layer by modifying its type, enter:

inputlayer = imageInputLayer(snet.Layers(1).InputSize, 'Normalization','none');
snet = SeriesNetwork([inputlayer; snet.Layers(2:end)]);

To view the layers of the pretrained series network, enter:

analyzeNetwork(snet)
% The saved network contains 23 layers including input, convolution, ReLU, cross channel normalization,
% max pool, fully connected, and the regression output layers.
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Create Target Object

Create a target object that has a custom name for your target device and an interface to connect your
target device to the host computer. Interface options are JTAG AND Ethernet.

hTarget = dlhdl.Target('Xilinx','Interface','Ethernet');

Create WorkFlow Object

Create an object of the dlhdl.Workflow class. When you create the class, specify the network and
the bitstream name. Specify the saved pretrained lanenet neural network, snet, as the network. Make
sure that the bitstream name matches the data type and the FPGA board that you are targeting. In
this example the target FPGA board is the Xilinx ZCU102 SOC board. The bitstream uses a single
data type.

hW = dlhdl.Workflow('network', snet, 'Bitstream', 'zcu102_single','Target',hTarget);
% If running on Xilinx ZC706 board, instead of the above command, 
% uncomment the command below.
%
% hW = dlhdl.Workflow('Network', snet, 'Bitstream', 'zc706_single','Target',hTarget);

Compile the Lanenet series Network

To compile the lanenet series network, run the compile function of the dlhdl.Workflow object.

dn = hW.compile;

          offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________
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    "InputDataOffset"           "0x00000000"     "24.0 MB"        
    "OutputResultOffset"        "0x01800000"     "4.0 MB"         
    "SystemBufferOffset"        "0x01c00000"     "28.0 MB"        
    "InstructionDataOffset"     "0x03800000"     "4.0 MB"         
    "ConvWeightDataOffset"      "0x03c00000"     "16.0 MB"        
    "FCWeightDataOffset"        "0x04c00000"     "148.0 MB"       
    "EndOffset"                 "0x0e000000"     "Total: 224.0 MB"

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Xilinx ZCU102 SoC hardware, run the deploy function of the
dlhdl.Workflow object. This function uses the output of the compile function to program the FPGA
board by using the programming file. It also downloads the network weights and biases. The deploy
function starts programming the FPGA device, displays progress messages, and the time it takes to
deploy the network.

 hW.deploy;

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Loading weights to FC Processor.
### 13% finished, current time is 28-Jun-2020 12:36:09.
### 25% finished, current time is 28-Jun-2020 12:36:10.
### 38% finished, current time is 28-Jun-2020 12:36:11.
### 50% finished, current time is 28-Jun-2020 12:36:12.
### 63% finished, current time is 28-Jun-2020 12:36:13.
### 75% finished, current time is 28-Jun-2020 12:36:14.
### 88% finished, current time is 28-Jun-2020 12:36:14.
### FC Weights loaded. Current time is 28-Jun-2020 12:36:15

Run Prediction for Example Video

Run the demoOnVideo function for the dlhdl.Workflow class object. This function loads the
example video, executes the predict function of the dlhdl.Workflow object, and then plots the
result.

demoOnVideo(hW,1);

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   24904175                  0.11320                       1           24904217              8.8
    conv_module            8967009                  0.04076 
        conv1              1396633                  0.00635 
        norm1               623003                  0.00283 
        pool1               226855                  0.00103 
        conv2              3410044                  0.01550 
        norm2               378531                  0.00172 
        pool2               233635                  0.00106 
        conv3              1139419                  0.00518 
        conv4               892918                  0.00406 
        conv5               615897                  0.00280 
        pool5                50189                  0.00023 
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    fc_module             15937166                  0.07244 
        fc6               15819257                  0.07191 
        fcLane1             117125                  0.00053 
        fcLane2                782                  0.00000 
 * The clock frequency of the DL processor is: 220MHz
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Image Category Classification by Using Deep Learning
This example shows you how to create, compile, and deploy a dlhdl.Workflow object with alexnet
as the network object by using the Deep Learning HDL Toolbox™ Support Package for Intel FPGA
and SoC. Use MATLAB® to retrieve the prediction results from the target device. Alexnet is a
pretrained convolutional neural network that has been trained on over a million images and can
classify images into 1000 object categories (such as keyboard, coffee, mug, pencil,and many animals).
You can also use VGG-19 and Darknet-19 as the network objects.

Prerequisites

• Xilinx ZCU102 SoC development kit
• Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC
• Deep Learning Toolbox™ Model for Alexnet
• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™

Load the Pretrained Series Network

To load the pretrained series network alexnet, enter:

snet = alexnet;

To load the pretrained series network vgg19, enter:

% snet = vgg19;

To load the pretrained series network darkent 19, enter:

% snet = darknet19;

To view the layers of the pretrained series network, enter:

analyzeNetwork(snet)
% The saved network contains 25 layers including input, convolution, ReLU, cross channel normalization,
% max pool, fully connected, and the softmax output layers.
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Create Target Object

Use the dlhdl.Target class to create a target object with a custom name for your target device and
an interface to connect your target device to the host computer. Interface options are JTAG and
Ethernet. To use JTAG,Install Xilinx™ Vivado™ Design Suite 2019.2. To set the Xilinx Vivado toolpath,
enter:

% hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2019.2\bin\vivado.bat');

hTarget = dlhdl.Target('Xilinx','Interface','Ethernet');

Create WorkFlow Object

Use the dlhdl.Workflow class to create an object. When you create the object, specify the network
and the bitstream name. Specify the saved pretrained alexnet neural network as the network. Make
sure that the bitstream name matches the data type and the FPGA board that you are targeting. In
this example, the target FPGA board is the Xilinx ZCU102 SoC board. The bitstream uses a single
data type.

hW = dlhdl.Workflow('Network', snet, 'Bitstream', 'zcu102_single','Target',hTarget);

Compile the Alexnet Series network

To compile the Alexnet series network, run the compile method of the dlhdl.Workflow object. You
can optionally specify the maximum number of input frames.
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dn = hW.compile('InputFrameNumberLimit',15)

          offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "12.0 MB"        
    "OutputResultOffset"        "0x00c00000"     "4.0 MB"         
    "SystemBufferOffset"        "0x01000000"     "28.0 MB"        
    "InstructionDataOffset"     "0x02c00000"     "4.0 MB"         
    "ConvWeightDataOffset"      "0x03000000"     "16.0 MB"        
    "FCWeightDataOffset"        "0x04000000"     "224.0 MB"       
    "EndOffset"                 "0x12000000"     "Total: 288.0 MB"

dn = struct with fields:
       Operators: [1×1 struct]
    LayerConfigs: [1×1 struct]
      NetConfigs: [1×1 struct]

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Intel Arria 10 SoC hardware, run the deploy function of the
dlhdl.Workflow object. This function uses the output of the compile function to program the FPGA
board by using the programming file. It also downloads the network weights and biases. The deploy
function starts programming the FPGA device, displays progress messages, and the time it takes to
deploy the network.

hW.deploy

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.

Load Image for Prediction

Load the example image.

imgFile = 'espressomaker.jpg';
inputImg = imresize(imread(imgFile), [227,227]);
imshow(inputImg)
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Run Prediction for One Image

Execute the predict method on the dlhdl.Workflow object and then show the label in the MATLAB
command window.

[prediction, speed] = hW.predict(single(inputImg),'Profile','on');

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   33531964                  0.15242                       1           33531979              6.6
    conv_module            8965629                  0.04075 
        conv1              1396567                  0.00635 
        norm1               622836                  0.00283 
        pool1               226593                  0.00103 
        conv2              3409730                  0.01550 
        norm2               378491                  0.00172 
        pool2               233223                  0.00106 
        conv3              1139273                  0.00518 
        conv4               892869                  0.00406 
        conv5               615895                  0.00280 
        pool5                50267                  0.00023 
    fc_module             24566335                  0.11167 
        fc6               15819119                  0.07191 
        fc7                7030644                  0.03196 
        fc8                1716570                  0.00780 
 * The clock frequency of the DL processor is: 220MHz

[val, idx] = max(prediction);
snet.Layers(end).ClassNames{idx}
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ans = 
'espresso maker'

Run Prediction for Multiple Images

Load multiple images and retrieve their prediction reults by using the mulltiple frame support
feature. For more information, see “Multiple Frame Support” on page 5-9.

The demoOnImage function loads multiple images and retrieves their prediction results. The
annotateresults function displays the image prediction result on top of the images which are
assembed into a 3-by-5 array.

imshow(inputImg)

 demoOnImage; 

### Finished writing input activations.
### Running single input activations.

FPGA PREDICTION: envelope 
FPGA PREDICTION: file 
FPGA PREDICTION: folding chair 
FPGA PREDICTION: mixing bowl 
FPGA PREDICTION: toilet seat 
FPGA PREDICTION: dining table 
FPGA PREDICTION: envelope 
FPGA PREDICTION: espresso maker 
FPGA PREDICTION: computer keyboard 
FPGA PREDICTION: monitor 
FPGA PREDICTION: mouse 
FPGA PREDICTION: ballpoint 
FPGA PREDICTION: letter opener 
FPGA PREDICTION: analog clock 
FPGA PREDICTION: ashcan 
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Defect Detection
This example shows how to deploy a custom trained series network to detect defects in objects such
as hexagon nuts. The custom networks were trained by using transfer learning. Transfer learning is
commonly used in deep learning applications. You can take a pretrained network and use it as a
starting point to learn a new task. Fine-tuning a network with transfer learning is usually much faster
and easier than training a network with randomly initialized weights from scratch. You can quickly
transfer learned features to a new task using a smaller number of training signals. This example uses
two trained series networks trainedDefNet.mat and trainedBlemDetNet.mat.

Prerequisites

• Xilinx ZCU102 SoC development kit
• Deep Learning HDL Toolbox™Support Package for Xilinx FPGA and SoC
• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™

Load Pretrained Networks

To download and load the custom pretrained series networks trainedDefNet and
trainedBlemDetNet, enter:

if ~isfile('trainedDefNet.mat')
        url = 'https://www.mathworks.com/supportfiles/dlhdl/trainedDefNet.mat';
        websave('trainedDefNet.mat',url);
    end
    net1 = load('trainedDefNet.mat');
    snet_defnet = net1.custom_alexnet

snet_defnet = 
  SeriesNetwork with properties:

         Layers: [25×1 nnet.cnn.layer.Layer]
     InputNames: {'data'}
    OutputNames: {'output'}

Analyze snet_defnet layers.

    analyzeNetwork(snet_defnet)  
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if ~isfile('trainedBlemDetNet.mat')
        url = 'https://www.mathworks.com/supportfiles/dlhdl/trainedBlemDetNet.mat';
        websave('trainedBlemDetNet.mat',url);
    end
    net2 = load('trainedBlemDetNet.mat');
    snet_blemdetnet = net2.convnet

snet_blemdetnet = 
  SeriesNetwork with properties:

         Layers: [12×1 nnet.cnn.layer.Layer]
     InputNames: {'imageinput'}
    OutputNames: {'classoutput'}

    analyzeNetwork(snet_blemdetnet)
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Create Target Object

Create a target object that has a custom name for your target device and an interface to connect your
target device to the host computer. Interface options are JTAG and Ethernet. To use the JTAG
connection, install the Xilinx(TM) Vivado(TM) Design Suite 2019.2.

To set the Xilinx Vivado toolpath, enter:

% hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2019.2\bin\vivado.bat');
    hT = dlhdl.Target('Xilinx','Interface','Ethernet')

hT = 
  Target with properties:

       Vendor: 'Xilinx'
    Interface: Ethernet
    IPAddress: '10.10.10.15'
     Username: 'root'
         Port: 22

Create Workflow Object for trainedDefNet Network

Create an object of the dlhdl.Workflow class. When you create the object, specify the network and
the bitstream name. Specify the saved pretrained trainedDefNet as the network. Make sure that
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the bitstream name matches the data type and the FPGA board that you are targeting. In this
example the target FPGA board is the Xilinx ZCU102 SOC board. The bitstream uses a single data
type.

hW = dlhdl.Workflow('Network',snet_defnet,'Bitstream','zcu102_single','Target',hT)

hW = 
  Workflow with properties:

            Network: [1×1 SeriesNetwork]
          Bitstream: 'zcu102_single'
    ProcessorConfig: []
             Target: [1×1 dlhdl.Target]

Compile trainedDefNet Series Network

To compile the trainedDefnet series network, run the compile function of the dlhdl.Workflow
object .

hW.compile

          offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "8.0 MB"         
    "OutputResultOffset"        "0x00800000"     "4.0 MB"         
    "SystemBufferOffset"        "0x00c00000"     "28.0 MB"        
    "InstructionDataOffset"     "0x02800000"     "4.0 MB"         
    "ConvWeightDataOffset"      "0x02c00000"     "12.0 MB"        
    "FCWeightDataOffset"        "0x03800000"     "84.0 MB"        
    "EndOffset"                 "0x08c00000"     "Total: 140.0 MB"

ans = struct with fields:
       Operators: [1×1 struct]
    LayerConfigs: [1×1 struct]
      NetConfigs: [1×1 struct]

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Xilinx ZCU102 SoC hardware, run the deploy function of the
dlhdl.Workflow object. This function uses the output of the compile function to program the FPGA
board by using the programming file. It also downloads the network weights and biases. The deploy
function starts programming the FPGA device, displays progress messages, and the time it takes to
deploy the network.

hW.deploy

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.

Run Prediction for One Image

Load an image from the attached testImages folder, resize the image to match the network image
input layer dimensions, and run the predict function of the dlhdl.Workflow object to retrieve and
display the defect prediction from the FPGA.
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wi = uint32(320);
he = uint32(240);
ch = uint32(3);

filename=[pwd,'\ng1.png'];
img=imread(filename);
img = imresize(img, [he, wi]);
img = mat2ocv(img);

    % Extract ROI for preprocessing
    [Iori, imgPacked, num, bbox] = myNDNet_Preprocess(img);

    % row-major > column-major conversion
    imgPacked2 = zeros([128,128,4],'uint8');
    for c = 1:4
        for i = 1:128
            for j = 1:128
                imgPacked2(i,j,c) = imgPacked((i-1)*128 + (j-1) + (c-1)*128*128 + 1);
            end
        end
    end

    % Classify detected nuts by using CNN
    scores = zeros(2,4);
    for i = 1:num
         [scores(:,i), speed] = hW.predict(single(imgPacked2(:,:,i)),'Profile','on');
    end

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   12199544                  0.05545                       1           12199586             18.0
    conv_module            3292478                  0.01497 
        conv1               412777                  0.00188 
        norm1               173433                  0.00079 
        pool1                58705                  0.00027 
        conv2               656607                  0.00298 
        norm2               128094                  0.00058 
        pool2                53221                  0.00024 
        conv3               780491                  0.00355 
        conv4               600179                  0.00273 
        conv5               409095                  0.00186 
        pool5                19991                  0.00009 
    fc_module              8907066                  0.04049 
        fc6                1759795                  0.00800 
        fc7                7030223                  0.03196 
        fc8                 117046                  0.00053 
 * The clock frequency of the DL processor is: 220MHz

    Iori = reshape(Iori, [1, he*wi*ch]);
    bbox = reshape(bbox, [1,16]);
    scores = reshape(scores, [1, 8]);
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    % Insert an annotation for postprocessing
    out = myNDNet_Postprocess(Iori, num, bbox, scores, wi, he, ch);

    sz = [he wi ch];
    out = ocv2mat(out,sz);
    imshow(out)

    

Create Workflow Object for trainedBlemDetNet Network

Create an object of the dlhdl.Workflow class. When you create the object, specify the network and
the bitstream name. Specify the saved pretrained trainedblemDetNet as the network. Make sure
that the bitstream name matches the data type and the FPGA board that you are targeting. In this
example the target FPGA board is the Xilinx ZCU102 SOC board. The bitstream uses a single data
type.

hW = dlhdl.Workflow('Network',snet_blemdetnet,'Bitstream','zcu102_single','Target',hT)

hW = 
  Workflow with properties:

            Network: [1×1 SeriesNetwork]
          Bitstream: 'zcu102_single'
    ProcessorConfig: []
             Target: [1×1 dlhdl.Target]

Compile trainedBlemDetNet Series Network

To compile the trainedBlemDetNet series network, run the compile function of the
dlhdl.Workflow object.
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hW.compile

          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "8.0 MB"        
    "OutputResultOffset"        "0x00800000"     "4.0 MB"        
    "SystemBufferOffset"        "0x00c00000"     "28.0 MB"       
    "InstructionDataOffset"     "0x02800000"     "4.0 MB"        
    "ConvWeightDataOffset"      "0x02c00000"     "4.0 MB"        
    "FCWeightDataOffset"        "0x03000000"     "36.0 MB"       
    "EndOffset"                 "0x05400000"     "Total: 84.0 MB"

ans = struct with fields:
       Operators: [1×1 struct]
    LayerConfigs: [1×1 struct]
      NetConfigs: [1×1 struct]

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Xilinx ZCU102 SoC hardware, run the deploy function of the
dlhdl.Workflow object. This function uses the output of the compile function to program the FPGA
board by using the programming file. It also downloads the network weights and biases. The deploy
function starts programming the FPGA device, displays progress messages, and the time it takes to
deploy the network.

 hW.deploy

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Loading weights to FC Processor.
### 50% finished, current time is 28-Jun-2020 12:33:36.
### FC Weights loaded. Current time is 28-Jun-2020 12:33:37

Run Prediction for One Image

Load an image from the attached testImages folder, resize the image to match the network image
input layer dimensions, and run the predict function of the dlhdl.Workflow object to retrieve and
display the defect prediction from the FPGA.

wi = uint32(320);
he = uint32(240);
ch = uint32(3);

filename=[pwd,'\ok1.png'];
img=imread(filename);
img = imresize(img, [he, wi]);
img = mat2ocv(img);

    % Extract ROI for preprocessing
    [Iori, imgPacked, num, bbox] = myNDNet_Preprocess(img);

    % row-major > column-major conversion
    imgPacked2 = zeros([128,128,4],'uint8');
    for c = 1:4
        for i = 1:128
            for j = 1:128
                imgPacked2(i,j,c) = imgPacked((i-1)*128 + (j-1) + (c-1)*128*128 + 1);
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            end
        end
    end

    % classify detected nuts by using CNN
    scores = zeros(2,4);
    for i = 1:num
         [scores(:,i), speed] = hW.predict(single(imgPacked2(:,:,i)),'Profile','on');
    end

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                    4886257                  0.02221                       1            4886299             45.0
    conv_module            1256664                  0.00571 
        conv_1              467349                  0.00212 
        maxpool_1           191204                  0.00087 
        crossnorm           159553                  0.00073 
        conv_2              397552                  0.00181 
        maxpool_2            41066                  0.00019 
    fc_module              3629593                  0.01650 
        fc_1               3614829                  0.01643 
        fc_2                 14763                  0.00007 
 * The clock frequency of the DL processor is: 220MHz

    Iori = reshape(Iori, [1, he*wi*ch]);
    bbox = reshape(bbox, [1,16]);
    scores = reshape(scores, [1, 8]);

    % Insert annotation for postprocessing
    out = myNDNet_Postprocess(Iori, num, bbox, scores, wi, he, ch);

    sz = [he wi ch];
    out = ocv2mat(out,sz);
    imshow(out)
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Profile Network for Performance Improvement
This example shows how to improve the performance of the deployed deep learning network, by
identifying bottle neck layers from the profiler results.

Prerequisites

• Xilinx™ ZCU102 SoC development kit.
• Deep Learning HDL Toolbox™ Support Package for Xilinx™ FPGA and SoC
• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™

Load the Pretrained SeriesNetwork

To load the pretrained digits series network, enter:

snet = getDigitsNetwork();

% To view the layers of the pretrained series network, enter:
snet.Layers

ans = 
  15×1 Layer array with layers:

     1   'imageinput'    Image Input             28×28×1 images with 'zerocenter' normalization
     2   'conv_1'        Convolution             8 3×3×1 convolutions with stride [1  1] and padding 'same'
     3   'batchnorm_1'   Batch Normalization     Batch normalization with 8 channels
     4   'relu_1'        ReLU                    ReLU
     5   'maxpool_1'     Max Pooling             2×2 max pooling with stride [2  2] and padding [0  0  0  0]
     6   'conv_2'        Convolution             16 3×3×8 convolutions with stride [1  1] and padding 'same'
     7   'batchnorm_2'   Batch Normalization     Batch normalization with 16 channels
     8   'relu_2'        ReLU                    ReLU
     9   'maxpool_2'     Max Pooling             2×2 max pooling with stride [2  2] and padding [0  0  0  0]
    10   'conv_3'        Convolution             32 3×3×16 convolutions with stride [1  1] and padding 'same'
    11   'batchnorm_3'   Batch Normalization     Batch normalization with 32 channels
    12   'relu_3'        ReLU                    ReLU
    13   'fc'            Fully Connected         10 fully connected layer
    14   'softmax'       Softmax                 softmax
    15   'classoutput'   Classification Output   crossentropyex with '0' and 9 other classes

Create Target Object

Create a target object that has a custom name for your target device and an interface to connect your
target device to the host computer. Interface options are JTAG and Ethernet. For Ethernet interface,
enter:

hTarget = dlhdl.Target('Xilinx','Interface','Ethernet');

To use the JTAG interface, install Xilinx™ Vivado™ Design Suite 2019.2. Set up the path to your
installed Xilinx Vivado executable if it is not already set up. For example, to set the toolpath, enter:

% hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2019.2\bin\vivado.bat');

For JTAG interface, enter:

% hTarget = dlhdl.Target('Xilinx','Interface','JTAG');
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Create WorkFlow Object

Create an object of the dlhdl.Workflow class. When you create the object, specify the network and
the bitstream name. Specify the saved pretrained digits neural network, snet, as the network. Make
sure that the bitstream name matches the data type and the FPGA board that you are targeting. In
this example the target FPGA board is the Xilinx ZCU102 SOC board. The bitstream uses a single
data type.

hW = dlhdl.Workflow('Network', snet, 'Bitstream', 'zcu102_single', 'Target', hTarget);
%
% If running on Xilinx ZC706 board, instead of the above command, 
% uncomment the command below.
%
% hW = dlhdl.Workflow('Network', snet, 'Bitstream', 'zc706_single','Target',hTarget);

Compile MNIST Series Network

To compile the MNIST series network, run the compile function of the dlhdl.Workflow object.

dn = hW.compile;

### Optimizing series network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "4.0 MB"        
    "OutputResultOffset"        "0x00400000"     "4.0 MB"        
    "SystemBufferOffset"        "0x00800000"     "28.0 MB"       
    "InstructionDataOffset"     "0x02400000"     "4.0 MB"        
    "ConvWeightDataOffset"      "0x02800000"     "4.0 MB"        
    "FCWeightDataOffset"        "0x02c00000"     "4.0 MB"        
    "EndOffset"                 "0x03000000"     "Total: 48.0 MB"

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Xilinx ZCU102 SoC hardware, run the deploy function of the
dlhdl.Workflow object. This function uses the output of the compile function to program the FPGA
board by using the programming file. It also downloads the network weights and biases.

hW.deploy;

### Programming FPGA Bitstream using Ethernet...
Downloading target FPGA device configuration over Ethernet to SD card ...
# Copied /tmp/hdlcoder_rd to /mnt/hdlcoder_rd
# Copying Bitstream hdlcoder_system.bit to /mnt/hdlcoder_rd
# Set Bitstream to hdlcoder_rd/hdlcoder_system.bit
# Copying Devicetree devicetree_dlhdl.dtb to /mnt/hdlcoder_rd
# Set Devicetree to hdlcoder_rd/devicetree_dlhdl.dtb
# Set up boot for Reference Design: 'AXI-Stream DDR Memory Access : 3-AXIM'

Downloading target FPGA device configuration over Ethernet to SD card done. The system will now reboot for persistent changes to take effect.

System is rebooting . . . . . .
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 28-Jun-2020 12:24:21
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Load Example Image

Load the example image.

inputImg = imread('five_28x28.pgm');

Run the Prediction

Execute the predict function of the dlhdl.Workflow object that has profile option set to 'on' to
display the latency and throughput results.

[~, speed] = hW.predict(single(inputImg),'Profile','on');

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                      73231                  0.00033                       1              73273           3002.5
    conv_module              26847                  0.00012 
        conv_1                6618                  0.00003 
        maxpool_1             4823                  0.00002 
        conv_2                4876                  0.00002 
        maxpool_2             3551                  0.00002 
        conv_3                7039                  0.00003 
    fc_module                46384                  0.00021 
        fc                   46384                  0.00021 
 * The clock frequency of the DL processor is: 220MHz

Identify and Display the Bottle Neck Layer

Remove the NumFrames, Total latency, and Frames/s from the profiler's results table. This
includes removing the module level and network level profiler results. Retain only the network layer
profiler results. Once the bottle neck layer has been identified display the bottle neck layer index,
running time, and information.

speed('Network',:) = [];
speed('____conv_module',:) = [];
speed('____fc_module',:)  = [];
speed = removevars(speed, {'NumFrames','Total Latency(cycles)','Frame/s'});

% then sort the profiler's results in descending ordering
speed = sortrows(speed,'Latency(cycles)','descend');

% the first row in the profile table is the bottleneck layer. Thus the
% following 
layerSpeed = speed(1,:);
layerName = strip(layerSpeed.Properties.RowNames{1},'_');
for idx = 1:length(snet.Layers)
    currLayer = snet.Layers(idx);
    if strcmp(currLayer.Name, layerName)
        bottleNeckLayer = currLayer;
        break;
    end
end
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% disply the bottle neck layer index 
dnnfpga.disp(['Bottleneck layer index is ', num2str(idx), '.']);

### Bottleneck layer index is 13.

% disply the bottle neck layer running time percentage  
percent = layerSpeed.("Latency(cycles)")/sum(speed.("Latency(cycles)")) * 100;
dispStr = sprintf('It accounts for about %0.2f percent of the total running time.', percent);
dnnfpga.disp(dispStr);

### It accounts for about 63.29 percent of the total running time.

% disply the bottle neck layer information  
dnnfpga.disp('Bottleneck layer information: ');

### Bottleneck layer information: 

disp(currLayer);

  FullyConnectedLayer with properties:

          Name: 'fc'

   Hyperparameters
     InputSize: 1568
    OutputSize: 10

   Learnable Parameters
       Weights: [10×1568 single]
          Bias: [10×1 single]

  Show all properties
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Bicyclist and Pedestrian Classification by Using FPGA
This example shows how to deploy a custom trained series network to detect pedestrians and
bicyclists based on their micro-Doppler signatures. This network is taken from the Pedestrian and
Bicyclist Classification Using Deep Learning example from the Phased Array Toolbox. For more
details on network training and input data, see Pedestrian and Bicyclist Classification Using Deep
Learning.

Prerequisites

• Xilinx™ Vivado™ Design Suite 2019.2
• Zynq® UltraScale+™ MPSoC ZCU102 Evaluation Kit
• HDL Verifier™ Support Package for XIlinx FPGA Boards
• MATLAB™ Coder ™ Interface for Deep Learning Libraries
• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™

The data files used in this example are:

• The MAT File trainedNetBicPed.mat contains a model trained on training data set
trainDataNoCar and its label set trainLabelNoCar.

• The MAT File testDataBicPed.mat contains the test data set testDataNoCar and its label set
testLabelNoCar.

Load Data and Network

Load a pretrained network. Load test data and its labels.

load('trainedNetBicPed.mat','trainedNetNoCar')
load('testDataBicPed.mat')

View the layers of the pre-trained series network

analyzeNetwork(trainedNetNoCar);
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Set up HDL Toolpath

Set up the path to your installed Xilinx™ Vivado™ Design Suite 2019.2 executable if it is not already
set up. For example, to set the toolpath, enter:

% hdlsetuptoolpath('ToolName', 'Xilinx Vivado','ToolPath', 'C:\Vivado\2019.2\bin');

Create Target Object

Create a target object for your target device with a vendor name and an interface to connect your
target device to the host computer. Interface options are JTAG (default) and Ethernet. Vendor options
are Intel or Xilinx. Use the installed Xilinx Vivado Design Suite over an Ethernet connection to
program the device.

hT = dlhdl.Target('Xilinx', 'Interface', 'Ethernet');

Create Workflow Object

Create an object of the dlhdl.Workflow class. When you create the object, specify the network and
the bitstream name. Specify the saved pre-trained series network, trainedNetNoCar, as the
network. Make sure the bitstream name matches the data type and the FPGA board that you are
targeting. In this example, the target FPGA board is the Zynq UltraScale+ MPSoC ZCU102 board.
The bitstream uses a single data type. .

hW = dlhdl.Workflow('Network', trainedNetNoCar, 'Bitstream', 'zcu102_single', 'Target', hT);

 Bicyclist and Pedestrian Classification by Using FPGA 

10-37



Compile trainedNetNoCar Series Network

To compile the trainedNetNoCar series network, run the compile function of the dlhdl.Workflow
object .

dn = hW.compile;

### Optimizing series network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "28.0 MB"       
    "OutputResultOffset"        "0x01c00000"     "4.0 MB"        
    "SystemBufferOffset"        "0x02000000"     "28.0 MB"       
    "InstructionDataOffset"     "0x03c00000"     "4.0 MB"        
    "ConvWeightDataOffset"      "0x04000000"     "4.0 MB"        
    "FCWeightDataOffset"        "0x04400000"     "4.0 MB"        
    "EndOffset"                 "0x04800000"     "Total: 72.0 MB"

Program the Bitstream onto FPGA and Download Network Weights

To deploy the network on the Zynq® UltraScale+™ MPSoC ZCU102 hardware, run the deploy
function of the dlhdl.Workflow object . This function uses the output of the compile function to
program the FPGA board by using the programming file.The function also downloads the network
weights and biases. The deploy function checks for the Xilinx Vivado tool and the supported tool
version. It then starts programming the FPGA device by using the bitstream, displays progress
messages and the time it takes to deploy the network.

hW.deploy;

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.

Run Predictions on Micro-Doppler Signatures

Classify one input from the sample test data set by using the predict function of the
dlhdl.Workflow object and display the label. The inputs to the network correspond to the
sonograms of the micro-Doppler signatures for a pedestrian or a bicyclist or a combination of both.

testImg = single(testDataNoCar(:, :, :, 1));
testLabel = testLabelNoCar(1);
classnames = trainedNetNoCar.Layers(end).Classes;

% Get predictions from network on single test input
score = hW.predict(testImg, 'Profile', 'On')

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                    9430692                  0.04287                       1            9430707             23.3
    conv_module            9411355                  0.04278 
        conv_1             4178753                  0.01899 
        maxpool_1          1394883                  0.00634 
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        conv_2             1975197                  0.00898 
        maxpool_2           706156                  0.00321 
        conv_3              813598                  0.00370 
        maxpool_3           121790                  0.00055 
        conv_4              148165                  0.00067 
        maxpool_4            22255                  0.00010 
        conv_5               41999                  0.00019 
        avgpool2d             8674                  0.00004 
    fc_module                19337                  0.00009 
        fc                   19337                  0.00009 
 * The clock frequency of the DL processor is: 220MHz

score = 1×5 single row vector

    0.9956    0.0000    0.0000    0.0044    0.0000

[~, idx1] = max(score);
predTestLabel = classnames(idx1)

predTestLabel = categorical
     ped 

Load five random images from the sample test data set and execute the predict function of the
dlhdl.Workflow object to display the labels alongside the signatures. The predictions will happen
at once since the input is concatenated along the fourth dimension.

numTestFrames = size(testDataNoCar, 4);
numView = 5;
listIndex = randperm(numTestFrames, numView);
testImgBatch = single(testDataNoCar(:, :, :, listIndex));
testLabelBatch = testLabelNoCar(listIndex);

% Get predictions from network using DL HDL Toolbox on FPGA
[scores, speed] = hW.predict(testImgBatch, 'Profile', 'On');

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                    9446929                  0.04294                       5           47138869             23.3
    conv_module            9427488                  0.04285 
        conv_1             4195175                  0.01907 
        maxpool_1          1394705                  0.00634 
        conv_2             1975204                  0.00898 
        maxpool_2           706332                  0.00321 
        conv_3              813499                  0.00370 
        maxpool_3           121869                  0.00055 
        conv_4              148063                  0.00067 
        maxpool_4            22019                  0.00010 
        conv_5               42053                  0.00019 
        avgpool2d             8684                  0.00004 
    fc_module                19441                  0.00009 
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        fc                   19441                  0.00009 
 * The clock frequency of the DL processor is: 220MHz

[~, idx2] = max(scores, [], 2);
predTestLabelBatch = classnames(idx2);

% Display the micro-doppler signatures along with the ground truth and
% predictions.
for k = 1:numView
    index = listIndex(k);
    imagesc(testDataNoCar(:, :, :, index));
    axis xy
    xlabel('Time (s)')
    ylabel('Frequency (Hz)')
    title('Ground Truth: '+string(testLabelNoCar(index))+', Prediction FPGA: '+string(predTestLabelBatch(k)))
    drawnow;
    pause(3);
end

The image shows the micro-Doppler signatures of two bicyclists (bic+bic) which is the ground truth.
The ground truth is the classification of the image against which the network prediction is compared.
The network prediction retrieved from the FPGA correctly predicts that the image has two bicyclists.
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Visualize Activations of a Deep Learning Network by Using
LogoNet

This example shows how to feed an image to a convolutional neural network and display the
activations of the different layers of the network. Examine the activations and discover which
features the network learns by comparing areas of activation to the original image. Channels in
earlier layers learn simple features like color and edges, while channels in the deeper layers learn
complex features. Identifying features in this way can help you understand what the network has
learned.

Logo Recognition Network

Logos assist in brand identification and recognition. Many companies incorporate their logos in
advertising, documentation materials, and promotions. The logo recognition network (LogoNet) was
developed in MATLAB® and can recognize 32 logos under various lighting conditions and camera
motions. Because this network focuses only on recognition, you can use it in applications where
localization is not required.

Prerequisites

• Arria10 SoC development kit
• Deep Learning HDL Toolbox™ Support Package for Intel FPGA and SoC
• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™
• Computer Vision Toolbox™

Load Pretrained Series Network

To load the pretrained series network LogoNet, enter:

snet = getLogoNetwork();

Create Target Object

Create a target object that has a custom name for your target device and an interface to connect your
target device to the host computer. Interface options are JTAG and Ethernet. To use JTAG, install
Intel™ Quartus™ Prime Standard Edition 18.1. Set up the path to your installed Intel Quartus Prime
executable if it is not already set up. For example, to set the toolpath, enter:

% hdlsetuptoolpath('ToolName', 'Altera Quartus II','ToolPath', 'C:\altera\18.1\quartus\bin64');

To create the target object, enter:

hTarget = dlhdl.Target('Intel','Interface','JTAG');

Create Workflow Object

Create an object of the dlhdl.Workflow class. When you create the object, specify the network and
the bitstream name. Specify the saved pretrained LogoNet neural network, snet, as the network.
Make sure that the bitstream name matches the data type and the FPGA board that you are
targeting. In this example, the target FPGA board is the Intel Arria10 SOC board. The bitstream uses
a single data type.
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hW = dlhdl.Workflow('network', snet, 'Bitstream', 'arria10soc_single','Target',hTarget);

Read and show an image. Save its size for future use.

im = imread('ferrari.jpg');
imshow(im)

imgSize = size(im);
imgSize = imgSize(1:2);

View Network Architecture

Analyze the network to see which layers you can view. The convolutional layers perform convolutions
by using learnable parameters. The network learns to identify useful features, often including one
feature per channel. The first convolutional layer has 64 channels.

analyzeNetwork(snet)

The Image Input layer specifies the input size. Before passing the image through the network, you
can resize it. The network can also process larger images.. If you feed the network larger images, the
activations also become larger. Because the network is trained on images of size 227-by-227, it is not
trained to recognize larger objects or features.

Show Activations of First Maxpool Layer

Investigate features by observing which areas in the maxpool layers activate on an image and
comparing that image to the corresponding areas in the original images. Each layer of a convolutional
neural network consists of many 2-D arrays called channels. Pass the image through the network and
examine the output activations of the maxpool_1 layer.

act1 = hW.activations(single(im),'maxpool_1','Profiler','on');

          offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________
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    "InputDataOffset"           "0x00000000"     "24.0 MB"        
    "OutputResultOffset"        "0x01800000"     "136.0 MB"       
    "SystemBufferOffset"        "0x0a000000"     "64.0 MB"        
    "InstructionDataOffset"     "0x0e000000"     "8.0 MB"         
    "ConvWeightDataOffset"      "0x0e800000"     "4.0 MB"         
    "EndOffset"                 "0x0ec00000"     "Total: 236.0 MB"

### Programming FPGA Bitstream using JTAG...
### Programming the FPGA bitstream has been completed successfully.

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   10182024                  0.06788                       1           10182034             14.7
    conv_module           10182024                  0.06788 
        conv_1             7088885                  0.04726 
        maxpool_1          3093166                  0.02062 
 * The clock frequency of the DL processor is: 150MHz

The activations are returned as a 3-D array, with the third dimension indexing the channel on the
maxpool_1 layer. To show these activations using the imtile function, reshape the array to 4-D. The
third dimension in the input to imtile represents the image color. Set the third dimension to have
size 1 because the activations do not have color. The fourth dimension indexes the channel.

sz = size(act1);
act1 = reshape(act1,[sz(1) sz(2) 1 sz(3)]);

Display the activations. Each activation can take any value, so normalize the output using the
mat2gray. All activations are scaled so that the minimum activation is 0 and the maximum activation
is 1. Display the 96 images on an 12-by-8 grid, one for each channel in the layer.

I = imtile(mat2gray(act1),'GridSize',[12 8]);
imshow(I)
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Investigate Activations in Specific Channels

Each tile in the activations grid is the output of a channel in the maxpool_1 layer. White pixels
represent strong positive activations and black pixels represent strong negative activations. A
channel that is mostly gray does not activate as strongly on the input image. The position of a pixel in
the activation of a channel corresponds to the same position in the original image. A white pixel at a
location in a channel indicates that the channel is strongly activated at that position.

Resize the activations in channel 33 to be the same size as the original image and display the
activations.

act1ch33 = act1(:,:,:,22);
act1ch33 = mat2gray(act1ch33);
act1ch33 = imresize(act1ch33,imgSize);

I = imtile({im,act1ch33});
imshow(I)

Find Strongest Activation Channel

Find interesting channels by programmatically investigating channels with large activations. Find the
channel that has the largest activation by using the max function, resize the channel output, and
display the activations.

[maxValue,maxValueIndex] = max(max(max(act1)));
act1chMax = act1(:,:,:,maxValueIndex);
act1chMax = mat2gray(act1chMax);
act1chMax = imresize(act1chMax,imgSize);

I = imtile({im,act1chMax});
imshow(I)
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Compare the strongest activation channel image to the original image. This channel activates on
edges. It activates positively on light left/dark right edges and negatively on dark left/light right
edges.

See Also

More About
• activations
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Authoring a Reference Design for Live Camera Integration with
Deep Learning Processor IP Core

This example shows how to create an HDL Coder™ reference design that contains a generated deep
learning processor IP core. The reference design receives a live camera input and uses a deployed
series network to classify the objects in the camera input. This figure is a high-level architectural
diagram that shows the reference design that will be implemented on the Xilinx™ Zynq™ Ultrascale+
(TM) MPsoC ZCU102 Evaluation Kit.

The user IP core block:

• Extracts the region of interest (ROI) based on ROI dimensions from the processing system (PS)
(ARM).

• Performs downsampling on the input image.
• Zero-centers the input image.
• Transfers the preprocessed image to the external DDR memory.
• Triggers the deep learning processor IP core.
• Notifies the PS(ARM) processor.

The deep learning processor IP core accesses the preprocessed inputs, performs the object
classification and loads the output results back into the external DDR memory.

The PS (ARM):

• Takes the ROI dimensions and passes them to the user IP core.
• Performs post-processing on the image data.
• Annotates the object classification results from the deep learning processor IP core on the output

video frame.

 Authoring a Reference Design for Live Camera Integration with Deep Learning Processor IP Core

10-47



You can also use MATLAB® to retrieve the classification results and verify the generated deep
learning processor IP core. The user DUT for this reference design is the preprocessing algorithm
(User IP Core). You can design the preprocessing DUT algorithm in Simulink®, generate the DUT IP
core, and integrate the generated DUT IP core into the larger system that contains the deep learning
processor IP core. To learn how to generate the DUT IP core, see “Run a Deep Learning Network on
FPGA with Live Camera Input” on page 10-52.

Generate Deep Learning Processor IP Core

Follow these steps to configure and generate the deep learning processor IP core into the reference
design.

1. Create a custom deep learning processor configuration.

hPC = dlhdl.ProcessorConfig

To learn more about the deep learning processor architecture, see “Deep Learning Processor
Architecture” on page 2-2. To get information about the custom processor configuration parameters
and modifying the parameters, see getModuleProperty and setModuleProperty.

2. Generate the Deep Learning Processor IP core.

To learn how to generate the custom deep learning processor IP, see “Generate Custom Processor IP”
on page 9-4. The deep learning processor IP core is generated by using the HDL Coder™ IP core
generation workflow. For more information, see “Custom IP Core Generation” (HDL Coder).

dlhdl.buildProcessor(hPC)

The generated IP core files are located at cwd\dlhdl_prj\ipcore. cwd is the current working
directory. The ipcore folder contains an HTML report located at cwd\dlhdl_prj\ipcore
\DUT_ip_v1_0\doc.
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The HTML report contains a description of the deep learning processor IP core, instructions for using
the core and integrating the core into your Vivado™ reference design, and a lsit of AXI4 registers.
You will need the AXI4 register list to enter addresses into the Vivado™ Address Mapping tool. For
more information about the AXI4 registers, see “Deep Learning Processor Register Map” on page 12-
7.

Integrate the Generated Deep Learning Processor IP Core into the Reference Design

Insert the generated deep learning processor IP core into your reference design. After inserting the
generated deep learning processor IP core into the reference design, you must:

• Connect the generated deep learning processor IP core AXI4 slave interface to an AXI4 master
device such as a JTAG AXI master IP core or a Zynq™ processing system (PS). Use the AXI4
master device to communicate with the deep learning processor IP core.

• Connect the vendor provided external memory interface IP core to the three AXI4 master
interfaces of the generated deep learning processor IP core.

The deep learning processor IP core uses the external memory interface to access the external DDR
memory. The image shows the deep learning processor IP core integrated into the Vivado™ reference
design and connected to the DDR memory interface generator (MIG) IP.
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Connect the External Memory Interface Generator

In your Vivado™ reference design add an external memory interface generator (MIG) block and
connect the generated deep learning processor IP core to the MIG module. The MIG module is
connected to the processor IP core through an AXI interconnect module. The image shows the high
level architectural design and the Vivado™ reference design implementation.

Create the Reference Design Definition File

The following code describes the contents of the ZCU102 reference design definition file
plugin_rd.m for the above Vivado™ reference design. For more details on how to define and register
the custom board, refer to the “Define Custom Board and Reference Design for Zynq Workflow” (HDL
Coder).

function hRD = plugin_rd(varargin)

% Parse config
config = ZynqVideoPSP.common.parse_config(...
   'ToolVersion', '2019.1', ...
   'Board', 'zcu102', ...
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    'Design', 'visionzynq_base', ...
   'ColorSpace', 'RGB' ...
);
% Construct reference design object
hRD = hdlcoder.ReferenceDesign('SynthesisTool', 'Xilinx Vivado');
hRD.BoardName = ZynqVideoPSP.ZCU102Hdmicam.BoardName();
hRD.ReferenceDesignName = 'HDMI RGB with DL Processor';
% Tool information
hRD.SupportedToolVersion = {'2019.1'}
...

Verify the Reference Design

After creating the reference design, use the HDL Coder™ IP core generation workflow to generate
the bitstream and program the ZCU102 board. You can then use MATLAB® and a dlhdl.Workflow
object to verify the deep learning processor IP core or you can use the HDL Coder™ workflow to
prototype the entire system. To verify the reference design, see “Run a Deep Learning Network on
FPGA with Live Camera Input” on page 10-52.
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Run a Deep Learning Network on FPGA with Live Camera Input
This example shows how to model preprocessing logic that receives a live camera input. You
implement it on a Zynq® Ultrascale+(TM) MPSoC ZCU102 board by using a custom video reference
design that has an integrated deep learning processor IP core for object classification. This example
uses the HDL Coder™ HW/SW co-design workflow.

Introduction

In this example, you:

1 Model the preprocesing logic that processes the live camera input for the deep learning
processor IP core. The processed video frame is sent to the external DDR memory on the FPGA
board.

2 Simulate the model in Simulink® to verify the algorithm functionality.
3 Implement the preprocessing logic on a ZCU102 board by using a custom video reference design

which includes the generated deep learning processor IP core.
4 Individually validate the preprocessing logic on the FPGA board.
5 Individually validate the deep learning processor IP core functionality by using the Deep

Learning HDL Toolbox™ prototyping workflow.
6 Deploy and validate the entire system on a ZCU102 board.

This figure is a high-level architectural diagram of the system. The result of the deep learning
network prediction is sent to the ARM processor. The ARM processor annotates the deep learning
network prediction onto the output video frame.

The objective of this system is to receive the live camera input through the HDMI input of the FMC
daughter card on the ZCU102 board. You design the preprocessing logic in Simulink® to select and
resize the region of interest (ROI). You then transmit the processed image frame to the deep learning
processor IP core to run image classification by using a deep learning network.
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Select and Resize the Region of Interest

Model the preprocesing logic to process the live camera input for the deep learning network and send
the video frame to external DDR memory on the FPGA board. This logic is modelled in the DUT
subsystem:

• Image frame selection logic that allows you to use your cursor to choose an ROI from the incoming
camera frame. The selected ROI is the input to the deep learning network.

• Image resizing logic that resizes the ROI image to match the input image size of the deep learning
network.

• AXI4 Master interface logic that sends the resized image frame into the external DDR memory,
where the deep learning processor IP core reads the input. To model the AXI4 Master interface,
see “Model Design for AXI4 Master Interface Generation” (HDL Coder).

This figure shows the Simulink® model for the preprocessing logic DUT.

Generate Preprocesing Logic HDL IP Core

To implement the preprocessing logic model on a ZCU102 SoC board, create an HDL Coder™
reference design in Vivado™ which receives the live camera input and transmits the processed video
data to the deep learning processor IP core. To create a custom video reference design that
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integrates the deep learning processor IP core, see “Authoring a Reference Design for Live Camera
Integration with Deep Learning Processor IP Core” on page 10-47.

Start the HDL Coder HDL Workflow Advisor and use the Zynq hardware-software co-design workflow
to deploy the preprocessing logic model on Zynq hardware. This workflow is the standard HDL Coder
workflow. In this example the only difference is that this reference design contains the generated
deep learning processor IP core. For more detais refer to the “Getting Started with Targeting Xilinx
Zynq Platform” (HDL Coder) example.

1. Start the HDL Workflow Advisor from the model by right-clicking the DLPreProcess DUT
subsystem and selecting HDL Advisor Workflow.

In Task 1.1, IP Core Generation is selected for Target workflow and ZCU102-FMC-HDMI-CAM is
selected for Target platform.

In Task 1.2, HDMI RGB with DL Processor is selected for Reference Design.
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In Task 1.3, the Target platform interface table is loaded as shown in the following screenshot.
Here you can map the ports of the DUT subsystem to the interfaces in the reference design.
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2. Right-click Task 3.2, Generate RTL Code and IP Core, and then select Run to Selected Task.
You can find the register address mapping and other documentation for the IP core in the generated
IP Core Report.

Integrate IP into the Custom Video Reference Design

In the HDL Workflow Advisor, run the Embedded System Integration tasks to deploy the generated
HDL IP core on Zynq hardware.

1. Run Task 4.1, Create Project. This task inserts the generated IP core into the HDMI RGB with
DL Processor reference design. To create a reference design that integrates the deep learning
processor IP core, see “Authoring a Reference Design for Live Camera Integration with Deep
Learning Processor IP Core” on page 10-47.

2. Click the link in the Result pane to open the generated Vivado project. In the Vivado tool, click
Open Block Design to view the Zynq design diagram, which includes the generated preprocessing
HDL IP core, the deep learning procesor IP core and the Zynq processor.
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3. In the HDL Workflow Advisor, run the rest of the tasks to generate the software interface model
and build and download the FPGA bitstream.

Deploy and Validate the Integrated Reference Design

To validate the integrated reference design that includes the generated preprocessing logic IP core,
deep learning processor IP core, and the Zynq processor:

1 Individually validate the preprocessing logic on the FPGA board.
2 Individually validate the deep learning processor IP core functionality by using the Deep

Learning HDL Toolbox™ prototyping workflow.
3 Deploy and validate the entire system on a ZCU102 board.
4 Deploy the entire system as an executable file on the SD card on the ZCU102 board.

1. Using the standard HDL Coder hardware/software co-design workflow, you can validate that the
preprocessing logic works as expected on the FPGA. The HDL Workflow Advisor generates a software
interface subsystem during Task 4.2 Generate Software Interface Model, which you can use in
your software model for interfacing with the FPGA logic. From the software model, you can tune and
probe the FPGA design on the hardware by using Simulink External Mode. Instruct the FPGA
preprocessing logic to capture an input frame and send it to the external DDR memory.

You can then use fpga object to create a connection from MATLAB to the ZCU102 board and read
the contents of the external DDR memory into MATLAB for validation. to use the fpga object, see
“Create Software Interface Script to Control and Rapidly Prototype HDL IP Core” (HDL Coder).
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2. The generated deep learning processor IP core has Ethernet and JTAG interfaces for
communications in the generated bitstream. You can individually validate the deep learning processor
IP core by using the dlhdl.Workflow object.

3. After you individually validate the preprocessing logic IP core and the deep learning processor IP
core, you can prototype the entire integrated system on the FPGA board. Using Simulink External
mode, instruct the FPGA preprocessing logic to send a processed input image frame to the DDR
buffer, instruct the deep learning processor IP core to read from the same DDR buffer, and execute
the prediction.

The deep learning processor IP core sends the result back to the external DDR memory. The software
model running on the ARM processor retrieves the prediction result and annotates the prediction on
the output video stream. This screenshots shows that you can read the ARM processor prediction
result by using a serial connection.
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This screenshot shows the frame captured from the output video stream which includes the ROI
selection and the annotated prediction result.
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4. After completing all your verification steps, manually deploy the entire reference design as an
executable on the SD card on the ZCU102 board by using the ARM processor. Once the manual
deployment is completed a MATLAB connection to the FPGA board is not required to operate the
reference design.
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Running Convolution-Only Networks by using FPGA
Deployment

To understand and debug convolutional networks, running and visualizing data is a useful tool.This
example shows how to deploy, run, and debug a convolution-only network by using FPGA deployment.

Prerequisites

• Xilinx Zynq ZCU102 Evaluation Kit
• Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC
• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™
• Deep Learning Toolbox™ Model for Resnet-50 Network

Resnet-50 Network

ResNet-50 is a convolutional neural network that is 50 layers deep. This pretrained network can
classify images into 1000 object categories (such as keyboard, mouse, pencil, and more).The network
has learned rich feature representations for a wide range of images. The network has an image input
size of 224-by-224.

Load Resnet-50 Network

Load the ResNet-50 network.

rnet = resnet50;

To visualize the structure of the Resnet-50 network, at the MATLAB command prompt, enter:

analyzeNetwork(rnet)

Create Subset of Resnet-50 Network

To examine the outputs of the max_pooling2d_1 layer, create this network which is a subset of the
ResNet-50 network:

layers = rnet.Layers(1:5);
outLayer = regressionLayer('Name','output');
layers(end+1) = outLayer;

snet = assembleNetwork(layers);

Create Target Object

Create a target object with a custom name and an interface to connect your target device to the host
computer. Interface options are JTAG and Ethernet. To use JTAG, install Xilinx™ Vivado™ Design
Suite 2019.2. To set the Xilinx Vivado toolpath, enter:

%hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'D:/share/apps/HDLTools/Vivado/2019.2-mw-0/Win/Vivado/2019.2\bin\vivado.bat');

hTarget = dlhdl.Target('Xilinx','Interface','Ethernet');
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Create Workflow Object

Create an object of the dlhdl.Workflow class. When you create the object, specify the network and
the bitstream name. Specify the saved pretrained ResNet-50 subset network, snet, as the network.
Make sure that the bitstream name matches the data type and the FPGA board that you are
targeting. In this example the target FPGA board is the Xilinx ZCU102 SOC board. The bitstream
uses a single data type.

hW = dlhdl.Workflow('network', snet, 'Bitstream', 'zcu102_single','Target',hTarget);

Compile Modified Resnet-50 Series Network

To compile the modified ResNet-50 series network, run the compile function of the dlhdl.Workflow
object.

hW.compile

dn = hW.compile

### Optimizing series network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "24.0 MB"       
    "OutputResultOffset"        "0x01800000"     "24.0 MB"       
    "SystemBufferOffset"        "0x03000000"     "28.0 MB"       
    "InstructionDataOffset"     "0x04c00000"     "4.0 MB"        
    "ConvWeightDataOffset"      "0x05000000"     "4.0 MB"        
    "EndOffset"                 "0x05400000"     "Total: 84.0 MB"

dn = struct with fields:
       Operators: [1×1 struct]
    LayerConfigs: [1×1 struct]
      NetConfigs: [1×1 struct]

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Xilinx ZCU102 hardware, run the deploy function of the
dlhdl.Workflow object. This function uses the output of the compile function to program the FPGA
board by using the programming file. It also downloads the network weights and biases. The deploy
function programs the FPGA device, displays progress messages, and the time it takes to deploy the
network.

hW.deploy

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.

Load Example Image

Load and display an image to use as an input image to the series network.

I = imread('daisy.jpg');
imshow(I)
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Run the Prediction

Execute the predict function of the dlhdl.Workflow object.

[P, speed] = hW.predict(single(I),'Profile','on');

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                    2813005                  0.01279                       1            2813015             78.2
    conv_module            2813005                  0.01279 
        conv1              2224168                  0.01011 
        max_pooling2d_1     588864                  0.00268 
 * The clock frequency of the DL processor is: 220MHz

The result data is returned as a 3-D array, with the third dimension indexing across the 64 feature
images.

sz = size(P)

sz = 1×3

    56    56    64

To visualize all 64 features in a single image, the data is reshaped into 4 dimensions, which is
appropriate input to the imtile function

R = reshape(P, [sz(1) sz(2) 1 sz(3)]);
sz = size(R)
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sz = 1×4

    56    56     1    64

The input to imtile is normalized using mat2gray. All values are scaled so that the minimum
activation is 0 and the maximum activation is 1.

J = imtile(mat2gray(R), 'GridSize', [8 8]);

To show these activations by using the imtile function, reshape the array to 4-D. The third
dimension in the input to imtile represents the image color. Set the third dimension to size 1
because the activations do not have color. The fourth dimension indexes the channel. A gride size of
8x8 is selected because there are 64 features to display.

imshow(J)
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Bright features indicate a strong activation. To understand and debug convolutional networks,
running and visualizing data is a useful tool.
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Accelerate Prototyping Workflow for Large Networks by using
Ethernet

This example shows how to deploy a deep learning network and obtain prediction results using the
Ethernet connection to your target device. You can significantly speed up the deployment and
prediction times for large deep learning networks by using Ethernet versus JTAG. This example shows
the workflow on a ZCU102 SoC board. The example also works on the other boards supported by
Deep Learning HDL Toolbox. See “Supported Networks, Layers and Boards” on page 7-2.

Prerequisites

• Xilinx ZCU102 SoC development kit. For help with board setup, see “Guided SD Card Setup”
(Deep Learning HDL Toolbox Support Package for Xilinx FPGA and SoC Devices).

• Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC
• Deep Learning HDL Toolbox™
• Deep Learning Toolbox™ Model for AlexNet Network

Introduction

Deep Learning HDL Toolbox establishes a connection between the host computer and FPGA board to
prototype deep learning networks on hardware. This connection is used to deploy deep learning
networks and run predictions. The connection provides two services:

• Programming the bitstream onto the FPGA
• Communicating with the design running on FPGA from MATLAB

There are two hardware interfaces for establishing a connection between the host computer and
FPGA board: JTAG and Ethernet.

JTAG Interface

The JTAG interface, programs the bitstream onto the FPGA over JTAG. The bitstream is not persistent
through power cycles. You must reprogram the bitstream each time the FPGA is turned on.

MATLAB uses JTAG to control an AXI Master IP in the FPGA design, to communicate with the design
running on the FPGA. You can use the AXI Master IP to read and write memory locations in the
onboard memory and deep learning processor.

This figure shows the high-level architecture of the JTAG interface.
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Ethernet Interface

The Ethernet interface leverages the ARM processor to send and receive information from the design
running on the FPGA. The ARM processor runs on a Linux operating system. You can use the Linux
operating system services to interact with the FPGA. When using the Ethernet interface, the
bitstream is downloaded to the SD card. The bitstream is persistent through power cycles and is
reprogrammed each time the FPGA is turned on. The ARM processor is configured with the correct
device tree when the bitstream is programmed.

To communicate with the design running on the FPGA, MATLAB leverages the Ethernet connection
between the host computer and ARM processor. The ARM processor runs a LIBIIO service, which
communicates with a datamover IP in the FPGA design. The datamover IP is used for fast data
transfers between the host computer and FPGA, which is useful when prototyping large deep
learning networks that would have long transfer times over JTAG. The ARM processor generates the
read and write transactions to access memory locations in both the onboard memory and deep
learning processor.

The figure below shows the high-level architecture of the Ethernet interface.\

Load and Compile Deep Learning Network

This example uses the pretrained series network alexnet. This network is a larger network that has
significant improvement in transfer time when deploying it to the FPGA by using Ethernet. To load
alexnet, run the command:

snet = alexnet;

To view the layers of the network enter:

analyzeNetwork(snet);
% The saved network contains 25 layers including input, convolution, ReLU, cross channel normalization,
% max pool, fully connected, and the softmax output layers.
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To deploy the deep learning network on the target FPGA board, create a dlhdl.Workflow object
that has the pretrained network snet as the network and the bitstream for your target FPGA
board. This example uses the bitstream 'zcu102_single', which has single data type and is
configured for the ZCU102 board. To run this example on a different board, use the bitstream for
your board.

hW = dlhdl.Workflow('Network', snet, 'Bitstream', 'zcu102_single');

Compile the alexnet network for deployment to the FPGA.

hW.compile;

          offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "24.0 MB"        
    "OutputResultOffset"        "0x01800000"     "4.0 MB"         
    "SystemBufferOffset"        "0x01c00000"     "28.0 MB"        
    "InstructionDataOffset"     "0x03800000"     "4.0 MB"         
    "ConvWeightDataOffset"      "0x03c00000"     "16.0 MB"        
    "FCWeightDataOffset"        "0x04c00000"     "224.0 MB"       
    "EndOffset"                 "0x12c00000"     "Total: 300.0 MB"

The output displays the size of the compiled network, which is 300 MB. The entire 300 MB is
transferred to the FPGA by using the deploy method. Due to the large size of the network, the
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transfer can take a significant amount of time if using JTAG. When using Ethernet, the transfer
happens quickly.

Deploy Deep Learning Network to FPGA

Before deploying a network, you must first establish a connection to the FPGA board. The
dlhdl.Target object represents this connection between the host computer and the FPGA. Create
two target objects, one for connection through the JTAG interface and one for connection through the
Ethernet interface. To use the JTAG connection, install Xilinx™ Vivado™ Design Suite 2019.2 and set
the path to your installed Xilinx Vivado executable if it is not already set up.

% hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2019.2\bin\vivado.bat');
hTargetJTAG = dlhdl.Target('Xilinx', 'Interface', 'JTAG')

hTargetJTAG = 
  Target with properties:

       Vendor: 'Xilinx'
    Interface: JTAG

hTargetEthernet = dlhdl.Target('Xilinx', 'Interface', 'Ethernet')

hTargetEthernet = 
  Target with properties:

       Vendor: 'Xilinx'
    Interface: Ethernet
    IPAddress: '192.168.1.100'
     Username: 'root'
         Port: 22

To deploy the network, assign the target object to the dlhdl.Workflow object and execute the
deploy method. The deployment happens in two stages. First, the bitstream is programmed onto the
FPGA. Then, the network is transferred to the onboard memory.

Select the JTAG interface and time the operation. This operation might take several minutes.

hW.Target = hTargetJTAG;
tic;
hW.deploy;

### Programming FPGA Bitstream using JTAG...
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to FC Processor.
### 8% finished, current time is 29-Jun-2020 16:33:14.
### 17% finished, current time is 29-Jun-2020 16:34:20.
### 25% finished, current time is 29-Jun-2020 16:35:38.
### 33% finished, current time is 29-Jun-2020 16:36:56.
### 42% finished, current time is 29-Jun-2020 16:38:13.
### 50% finished, current time is 29-Jun-2020 16:39:31.
### 58% finished, current time is 29-Jun-2020 16:40:48.
### 67% finished, current time is 29-Jun-2020 16:42:02.
### 75% finished, current time is 29-Jun-2020 16:43:10.
### 83% finished, current time is 29-Jun-2020 16:44:23.
### 92% finished, current time is 29-Jun-2020 16:45:39.
### FC Weights loaded. Current time is 29-Jun-2020 16:46:31
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elapsedTimeJTAG = toc

elapsedTimeJTAG = 1.0614e+03

Use the Ethernet interface by setting the dlhdl.Workflow target object to hTargetEthernet and
running the deploy function. There is a significant acceleration in the netwok deployment when you
use Ethernet to deploy the bitstream and network to the FPGA.

hW.Target = hTargetEthernet;
tic;
hW.deploy;

### Programming FPGA Bitstream using Ethernet...
Downloading target FPGA device configuration over Ethernet to SD card ...
# Copied /tmp/hdlcoder_rd to /mnt/hdlcoder_rd
# Copying Bitstream hdlcoder_system.bit to /mnt/hdlcoder_rd
# Set Bitstream to hdlcoder_rd/hdlcoder_system.bit
# Copying Devicetree devicetree_dlhdl.dtb to /mnt/hdlcoder_rd
# Set Devicetree to hdlcoder_rd/devicetree_dlhdl.dtb
# Set up boot for Reference Design: 'AXI-Stream DDR Memory Access : 3-AXIM'

Downloading target FPGA device configuration over Ethernet to SD card done. The system will now reboot for persistent changes to take effect.

System is rebooting . . . . . .
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to FC Processor.
### 8% finished, current time is 29-Jun-2020 16:47:08.
### 17% finished, current time is 29-Jun-2020 16:47:08.
### 25% finished, current time is 29-Jun-2020 16:47:09.
### 33% finished, current time is 29-Jun-2020 16:47:10.
### 42% finished, current time is 29-Jun-2020 16:47:10.
### 50% finished, current time is 29-Jun-2020 16:47:11.
### 58% finished, current time is 29-Jun-2020 16:47:13.
### 67% finished, current time is 29-Jun-2020 16:47:13.
### 75% finished, current time is 29-Jun-2020 16:47:15.
### 83% finished, current time is 29-Jun-2020 16:47:16.
### 92% finished, current time is 29-Jun-2020 16:47:18.
### FC Weights loaded. Current time is 29-Jun-2020 16:47:18

elapsedTimeEthernet = toc

elapsedTimeEthernet = 47.5854

Changing from JTAG to Ethernet the deploy function reprograms the bitstream, which accounts for
most of the elapsed time. Reprogramming is due to different methods that are used to program the
bitstream for the different hardware interfaces. The Ethernet interface configures the ARM processor
and uses a persistent programming method so that the bitstream is reprogrammed each time the
board is turned on. When deploying different deep learning networks by using the same bitstream
and hardware interface, you can skip the bitstream programming, which further speeds up network
deployment.

Run Prediction for Example Image

Run a prediction for an example image by using the predict method.

imgFile = 'zebra.JPEG';
inputImg = imresize(imread(imgFile), [227,227]);
imshow(inputImg)
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prediction = hW.predict(single(inputImg));

### Finished writing input activations.
### Running single input activations.

[val, idx] = max(prediction);
result = snet.Layers(end).ClassNames{idx}

result = 
'zebra'

Release any hardware resources associated with the dlhdl.Target objects.

release(hTargetJTAG)
release(hTargetEthernet)
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Create Series Network for Quantization
This example shows how to fine-tune a pretrained AlexNet convolutional neural network to perform
classification on a new collection of images.

AlexNet has been trained on over a million images and can classify images into 1000 object
categories (such as keyboard, coffee mug, pencil, and many animals). The network has learned rich
feature representations for a wide range of images. The network takes an image as input and outputs
a label for the object in the image together with the probabilities for each of the object categories.

Transfer learning is commonly used in deep learning applications. You can take a pretrained network
and use it as a starting point to learn a new task. Fine-tuning a network with transfer learning is
usually much faster and easier than training a network with randomly initialized weights from
scratch. You can quickly transfer learned features to a new task using a smaller number of training
images.

Load Training Data

Unzip and load the new images as an image datastore. imageDatastore automatically labels the
images based on folder names and stores the data as an ImageDatastore object. An image
datastore enables you to store large image data, including data that does not fit in memory, and
efficiently read batches of images during training of a convolutional neural network.

unzip('logos_dataset.zip');

imds = imageDatastore('logos_dataset', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

Divide the data into training and validation data sets. Use 70% of the images for training and 30% for
validation. splitEachLabel splits the images datastore into two new datastores.

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');

Load Pretrained Network

Load the pretrained AlexNet neural network. If Deep Learning Toolbox™ Model for AlexNet Network
is not installed, then the software provides a download link. AlexNet is trained on more than one
million images and can classify images into 1000 object categories, such as keyboard, mouse, pencil,
and many animals. As a result, the model has learned rich feature representations for a wide range of
images.

snet = alexnet;

Use analyzeNetwork to display an interactive visualization of the network architecture and detailed
information about the network layers.

analyzeNetwork(snet)
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The first layer, the image input layer, requires input images of size 227-by-227-by-3, where 3 is the
number of color channels.

inputSize = snet.Layers(1).InputSize

inputSize = 1×3

   227   227     3

Replace Final Layers

The last three layers of the pretrained network net are configured for 1000 classes. These three
layers must be fine-tuned for the new classification problem. Extract all layers, except the last three,
from the pretrained network.

layersTransfer = snet.Layers(1:end-3);

Transfer the layers to the new classification task by replacing the last three layers with a fully
connected layer, a softmax layer, and a classification output layer. Specify the options of the new fully
connected layer according to the new data. Set the fully connected layer to have the same size as the
number of classes in the new data. To learn faster in the new layers than in the transferred layers,
increase the WeightLearnRateFactor and BiasLearnRateFactor values of the fully connected
layer.

numClasses = numel(categories(imdsTrain.Labels))
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numClasses = 32

layers = [
    layersTransfer
    fullyConnectedLayer(numClasses,'WeightLearnRateFactor',20,'BiasLearnRateFactor',20)
    softmaxLayer
    classificationLayer];

Train Network

The network requires input images of size 227-by-227-by-3, but the images in the image datastores
have different sizes. Use an augmented image datastore to automatically resize the training images.
Specify additional augmentation operations to perform on the training images: randomly flip the
training images along the vertical axis, and randomly translate them up to 30 pixels horizontally and
vertically. Data augmentation helps prevent the network from overfitting and memorizing the exact
details of the training images.

pixelRange = [-30 30];
imageAugmenter = imageDataAugmenter( ...
    'RandXReflection',true, ...
    'RandXTranslation',pixelRange, ...
    'RandYTranslation',pixelRange);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...
    'DataAugmentation',imageAugmenter);

To automatically resize the validation images without performing further data augmentation, use an
augmented image datastore without specifying any additional preprocessing operations.

augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Specify the training options. For transfer learning, keep the features from the early layers of the
pretrained network (the transferred layer weights). To slow down learning in the transferred layers,
set the initial learning rate to a small value. In the previous step, you increased the learning rate
factors for the fully connected layer to speed up learning in the new final layers. This combination of
learning rate settings results in fast learning only in the new layers and slower learning in the other
layers. When performing transfer learning, you do not need to train for as many epochs. An epoch is a
full training cycle on the entire training data set. Specify the mini-batch size and validation data. The
software validates the network every ValidationFrequency iterations during training.

options = trainingOptions('sgdm', ...
    'MiniBatchSize',10, ...
    'MaxEpochs',6, ...
    'InitialLearnRate',1e-4, ...
    'Shuffle','every-epoch', ...
    'ValidationData',augimdsValidation, ...
    'ValidationFrequency',3, ...
    'Verbose',false, ...
    'Plots','training-progress');

Train the network that consists of the transferred and new layers. By default, trainNetwork uses a
GPU if one is available (requires Parallel Computing Toolbox™ and a CUDA® enabled GPU with
compute capability 3.0 or higher). Otherwise, it uses a CPU. You can also specify the execution
environment by using the 'ExecutionEnvironment' name-value pair argument of
trainingOptions.

netTransfer = trainNetwork(augimdsTrain,layers,options);
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Vehicle Detection Using YOLO v2 Deployed to FPGA
This example shows how to train and deploy a you look only once (YOLO) v2 object detector.

Deep learning is a powerful machine learning technique that you can use to train robust object
detectors. Several techniques for object detection exist, including Faster R-CNN and you only look
once (YOLO) v2. This example trains a YOLO v2 vehicle detector using the
trainYOLOv2ObjectDetector function.

Load Dataset

This example uses a small vehicle dataset that contains 295 images. Each image contains one or two
labeled instances of a vehicle. A small dataset is useful for exploring the YOLO v2 training procedure,
but in practice, more labeled images are needed to train a robust detector. Unzip the vehicle images
and load the vehicle ground truth data.

unzip vehicleDatasetImages.zip
data = load('vehicleDatasetGroundTruth.mat');
vehicleDataset = data.vehicleDataset;

The vehicle data is stored in a two-column table, where the first column contains the image file paths
and the second column contains the vehicle bounding boxes.

% Add the fullpath to the local vehicle data folder.
vehicleDataset.imageFilename = fullfile(pwd,vehicleDataset.imageFilename);

Split the dataset into training and test sets. Select 60% of the data for training and the rest for
testing the trained detector.

rng(0);
shuffledIndices = randperm(height(vehicleDataset));
idx = floor(0.6 * length(shuffledIndices) );
trainingDataTbl = vehicleDataset(shuffledIndices(1:idx),:);
testDataTbl = vehicleDataset(shuffledIndices(idx+1:end),:);

Use imageDatastore and boxLabelDataStore to create datastores for loading the image and
label data during training and evaluation.

imdsTrain = imageDatastore(trainingDataTbl{:,'imageFilename'});
bldsTrain = boxLabelDatastore(trainingDataTbl(:,'vehicle'));

imdsTest = imageDatastore(testDataTbl{:,'imageFilename'});
bldsTest = boxLabelDatastore(testDataTbl(:,'vehicle'));

Combine image and box label datastores.

trainingData = combine(imdsTrain,bldsTrain);
testData = combine(imdsTest,bldsTest);

Create a YOLO v2 Object Detection Network

A YOLO v2 object detection network is composed of two subnetworks. A feature extraction network
followed by a detection network. The feature extraction network is typically a pretrained CNN (for
details, see Pretrained Deep Neural Networks). This example uses AlexNet for feature extraction. You
can also use other pretrained networks such as MobileNet v2 or ResNet-18 can also be used
depending on application requirements. The detection sub-network is a small CNN compared to the
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feature extraction network and is composed of a few convolutional layers and layers specific for
YOLO v2.

Use the yolov2Layers function to create a YOLO v2 object detection network automatically given a
pretrained ResNet-50 feature extraction network. yolov2Layers requires you to specify several
inputs that parameterize a YOLO v2 network:

• Network input size
• Anchor boxes
• Feature extraction network

First, specify the network input size and the number of classes. When choosing the network input
size, consider the minimum size required by the network itself, the size of the training images, and
the computational cost incurred by processing data at the selected size. When feasible, choose a
network input size that is close to the size of the training image and larger than the input size
required for the network. To reduce the computational cost of running the example, specify a network
input size of [224 224 3], which is the minimum size required to run the network.

inputSize = [224 224 3];

Define the number of object classes to detect.

numClasses = width(vehicleDataset)-1;

Note that the training images used in this example are bigger than 224-by-224 and vary in size, so
you must resize the images in a preprocessing step prior to training.

Next, use estimateAnchorBoxes to estimate anchor boxes based on the size of objects in the
training data. To account for the resizing of the images prior to training, resize the training data for
estimating anchor boxes. Use transform to preprocess the training data, then define the number of
anchor boxes and estimate the anchor boxes. Resize the training data to the input image size of the
network using the supporting function yolo_preprocessData.

trainingDataForEstimation = transform(trainingData,@(data)yolo_preprocessData(data,inputSize));
numAnchors = 7;
[anchorBoxes, meanIoU] = estimateAnchorBoxes(trainingDataForEstimation, numAnchors)

anchorBoxes = 7×2

   145   126
    91    86
   161   132
    41    34
    67    64
   136   111
    33    23

meanIoU = 0.8651

For more information on choosing anchor boxes, see Estimate Anchor Boxes From Training Data
(Computer Vision Toolbox) (Computer Vision Toolbox™) and Anchor Boxes for Object Detection
(Computer Vision Toolbox).

Now, use alexnet to load a pretrained AlexNet model.

featureExtractionNetwork = alexnet

 Vehicle Detection Using YOLO v2 Deployed to FPGA

10-77

https://www.mathworks.com/help/vision/ref/yolov2layers.html
https://www.mathworks.com/help/vision/ref/estimateanchorboxes.html
https://www.mathworks.com/help/vision/examples/estimate-anchor-boxes-from-training-data.html
https://www.mathworks.com/help/vision/ug/anchor-boxes-for-object-detection.html


featureExtractionNetwork = 
  SeriesNetwork with properties:

         Layers: [25×1 nnet.cnn.layer.Layer]
     InputNames: {'data'}
    OutputNames: {'output'}

Select 'relu5' as the feature extraction layer to replace the layers after 'relu5' with the detection
subnetwork. This feature extraction layer outputs feature maps that are downsampled by a factor of
16. This amount of downsampling is a good trade-off between spatial resolution and the strength of
the extracted features, as features extracted further down the network encode stronger image
features at the cost of spatial resolution. Choosing the optimal feature extraction layer requires
empirical analysis.

featureLayer = 'relu5';

Create the YOLO v2 object detection network. .

lgraph = yolov2Layers(inputSize,numClasses,anchorBoxes,featureExtractionNetwork,featureLayer);

You can visualize the network using analyzeNetwork or Deep Network Designer from Deep
Learning Toolbox™.

If more control is required over the YOLO v2 network architecture, use Deep Network Designer to
design the YOLO v2 detection network manually. For more information, see Design a YOLO v2
Detection Network (Computer Vision Toolbox).

Data Augmentation

Data augmentation is used to improve network accuracy by randomly transforming the original data
during training. By using data augmentation you can add more variety to the training data without
actually having to increase the number of labeled training samples.

Use transform to augment the training data by randomly flipping the image and associated box
labels horizontally. Note that data augmentation is not applied to the test and validation data. Ideally,
test and validation data should be representative of the original data and is left unmodified for
unbiased evaluation.

augmentedTrainingData = transform(trainingData,@yolo_augmentData);

Preprocess Training Data and Train YOLO v2 Object Detector

Preprocess the augmented training data, and the validation data to prepare for training.

preprocessedTrainingData = transform(augmentedTrainingData,@(data)yolo_preprocessData(data,inputSize));

Use trainingOptions to specify network training options. Set 'ValidationData' to the
preprocessed validation data. Set 'CheckpointPath' to a temporary location. This enables the
saving of partially trained detectors during the training process. If training is interrupted, such as by
a power outage or system failure, you can resume training from the saved checkpoint.

options = trainingOptions('sgdm', ...
        'MiniBatchSize', 16, ....
        'InitialLearnRate',1e-3, ...
        'MaxEpochs',20,...
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        'CheckpointPath', tempdir, ...
        'Shuffle','never');

Use trainYOLOv2ObjectDetector function to train YOLO v2 object detector.

[detector,info] = trainYOLOv2ObjectDetector(preprocessedTrainingData,lgraph,options);

*************************************************************************
Training a YOLO v2 Object Detector for the following object classes:

* vehicle

Training on single CPU.
Initializing input data normalization.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |     RMSE     |     Loss     |      Rate       |
|========================================================================================|
|       1 |           1 |       00:00:01 |         7.23 |         52.3 |          0.0010 |
|       5 |          50 |       00:00:35 |         0.98 |          1.0 |          0.0010 |
|      10 |         100 |       00:01:13 |         0.78 |          0.6 |          0.0010 |
|      14 |         150 |       00:01:51 |         0.64 |          0.4 |          0.0010 |
|      19 |         200 |       00:02:29 |         0.59 |          0.3 |          0.0010 |
|      20 |         220 |       00:02:43 |         0.57 |          0.3 |          0.0010 |
|========================================================================================|
Detector training complete.
*************************************************************************

As a quick test, run the detector on one test image. Make sure you resize the image to the same size
as the training images.

I = imread(testDataTbl.imageFilename{2});
I = imresize(I,inputSize(1:2));
[bboxes,scores] = detect(detector,I);

Display the results.

I_new = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure
imshow(I_new)
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Load Pretrained Network

Load the pretrained network.

snet=detector.Network;
I_pre=yolo_pre_proc(I);

Use analyzeNetwork to obtain information about the network layers:

analyzeNetwork(snet)
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Create Target Object

Create a target object for your target device with a vendor name and an interface to connect your
target device to the host computer. Interface options are JTAG (default) and Ethernet. Vendor options
are Intel or Xilinx. Use the installed Xilinx Vivado Design Suite over an Ethernet connection to
program the device.

hTarget = dlhdl.Target('Xilinx', 'Interface', 'Ethernet');

Create Workflow Object

Create an object of the dlhdl.Workflow class. When you create the object, specify the network and
the bitstream name. Specify the saved pre-trained series network, trainedNetNoCar, as the
network. Make sure the bitstream name matches the data type and the FPGA board that you are
targeting. In this example, the target FPGA board is the Zynq UltraScale+ MPSoC ZCU102 board.
The bitstream uses a single data type.

hW=dlhdl.Workflow('Network', snet, 'Bitstream', 'zcu102_single','Target',hTarget)

hW = 
  Workflow with properties:

            Network: [1×1 DAGNetwork]
          Bitstream: 'zcu102_single'
    ProcessorConfig: []
             Target: [1×1 dlhdl.Target]
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Compile YOLO v2 Object Detector

To compile the snet series network, run the compile function of the dlhdl.Workflow object .

dn = hW.compile

### Optimizing series network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "24.0 MB"       
    "OutputResultOffset"        "0x01800000"     "4.0 MB"        
    "SystemBufferOffset"        "0x01c00000"     "28.0 MB"       
    "InstructionDataOffset"     "0x03800000"     "4.0 MB"        
    "ConvWeightDataOffset"      "0x03c00000"     "16.0 MB"       
    "EndOffset"                 "0x04c00000"     "Total: 76.0 MB"

dn = struct with fields:
       Operators: [1×1 struct]
    LayerConfigs: [1×1 struct]
      NetConfigs: [1×1 struct]

Program the Bitstream onto FPGA and Download Network Weights

To deploy the network on the Zynq® UltraScale+™ MPSoC ZCU102 hardware, run the deploy
function of the dlhdl.Workflow object . This function uses the output of the compile function to
program the FPGA board by using the programming file.The function also downloads the network
weights and biases. The deploy function checks for the Xilinx Vivado tool and the supported tool
version. It then starts programming the FPGA device by using the bitstream, displays progress
messages and the time it takes to deploy the network.

hW.deploy

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.

Load the Example Image and Run The Prediction

Execute the predict function on the dlhdl.Workflow object and display the result:

[prediction, speed] = hW.predict(I_pre,'Profile','on');

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                    8724510                  0.03966                       1            8724520             25.2
    conv_module            8724510                  0.03966 
        conv1              1355434                  0.00616 
        norm1               581412                  0.00264 
        pool1               219416                  0.00100 
        conv2              2208308                  0.01004 
        norm2               368019                  0.00167 
        pool2               221821                  0.00101 
        conv3               982880                  0.00447 
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        conv4               772573                  0.00351 
        conv5               533396                  0.00242 
        yolov2Conv1         667481                  0.00303 
        yolov2Conv2         668607                  0.00304 
        yolov2ClassConv     145300                  0.00066 
 * The clock frequency of the DL processor is: 220MHz

Display the prediction results.

[bboxesn, scoresn, labelsn] = yolo_post_proc(prediction,I_pre,anchorBoxes,{'Vehicle'});
I_new3 = insertObjectAnnotation(I,'rectangle',bboxesn,scoresn);
figure
imshow(I_new3)
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Custom Deep Learning Processor Generation to Meet
Performance Requirements

This example shows how to create a custom processor configuration and estimate the performance of
a pretrained series network. You can then modify parameters of the custom processor configuration
and re-estimate the performance. Once you have achieved your performance requirements you can
generate a custom bitstream by using the custom processor configuration.

Load Pretrained Series Network

To load the pretrained series network LogoNet, enter:

snet = getLogoNetwork;

Create Custom Processor Configuration

To create a custom processor configuration, use the dlhdl.ProcessorConfig object. For more
information, see dlhdl.ProcessorConfig. To learn about modifiable parameters of the processor
configuration, see getModuleProperty and setModuleProperty.

hPC = dlhdl.ProcessorConfig;
hPC.TargetFrequency = 220;

Create Workflow Object

Create a dlhdl.Workflow object. Specify snet as the network and hPC as the ProcessorConfig.

hW = dlhdl.Workflow('Network',snet,'ProcessorConfig',hPC)
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Estimate LogoNet Performance

To estimate the performance of the LogoNet series network, use the estimate function of the
dlhdl.Workflow object. The function returns the estimated layer latency, network latency, and
network performance in frames per second (Frames/s).

hW.estimate('Performance')

The output of the estimate function is:

The estimated frames per second is 5.6 Frames/s. To improve the network performance, modify the
custom processor convolution module kernel data type, convolution processor thread number, fully
connected module kernel data type, and fully connected module thread number. For more information
about these processor parameters, see getModuleProperty and setModuleProperty.

Create Modified Custom Processor Configuration

To create a custom processor configuration, use the dlhdl.ProcessorConfig object. For more
information, see dlhdl.ProcessorConfig. To learn about modifiable parameters of the processor
configuration, see getModuleProperty and setModuleProperty.

hPCNew = dlhdl.ProcessorConfig;
hPC.TargetFrequency = 300;
hPCNew.setModuleProperty('conv', 'KernelDataType',   'int8');
hPCNew.setModuleProperty('conv', 'ConvThreadNumber', 64);
hPCNew.setModuleProperty('fc', 'KernelDataType',   'int8');
hPCNew.setModuleProperty('fc', 'FCThreadNumber',   16);
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Quantize LogoNet Series Network

To estimate the performance of the LogoNet series network by using the new custom processor
configuration, quantize the LogoNet network. For more information, see “Estimate Performance of
Quantized LogoNet Running On ZCU102 Bitstream”. Use the quantized network object dlquantObj
to estimate performance by using the new custom processor configuration.

Create Workflow Object

Create a dlhdl.Workflow object. Specify dlQuantObj as the network and hPC as the
ProcessorConfig.

hW = dlhdl.Workflow('Network',dlquantObj,'ProcessorConfig',hPCNew)

Estimate LogoNet Performance

To estimate the performance of the LogoNet series network, use the estimate function of the
dlhdl.Workflow object. The function returns the estimated layer latency, network latency, and
network performance in frames per second (Frames/s).

hW.estimate('Performance')

The output of the estimate function is:
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The estimated frames per second is 21.5 Frames/s.

Generate Custom Processor and Bitstream

Use the new custom processor configuration to build and generate a custom processor and bitstream.
Use the custom bitstream to deploy the LogoNet network to your target FPGA board.

hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2019.2\bin\vivado.bat');
dlhdl.buildProcessor(hPCNew);

To learn how to use the generated bitstream file, see “Generate Custom Bitstream” on page 9-2.

The generated bitstream in this example is similar to the zcu102_int8 bitstream. To deploy the
quantized LogoNet network using the zcu102_int8 bitstream, see “Obtain Prediction Results for
Quantized LogoNet Network”.
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Quantization of Deep Neural Networks
In digital hardware, numbers are stored in binary words. A binary word is a fixed-length sequence of
bits (1's and 0's). The data type defines how hardware components or software functions interpret
this sequence of 1's and 0's. Numbers are represented as either scaled integer (usually referred to as
fixed-point) or floating-point data types.

Most pretrained neural networks and neural networks trained using Deep Learning Toolbox™ use
single-precision floating point data types. Even small trained neural networks require a considerable
amount of memory, and require hardware that can perform floating-point arithmetic. These
restrictions can inhibit deployment of deep learning capabilities to low-power microcontrollers and
FPGAs.

Using the Deep Learning Toolbox Model Quantization Library support package, you can quantize a
network to use 8-bit scaled integer data types.

Quantization of a neural network requires a GPU, the GPU Coder™ Interface for Deep Learning
Libraries support package, and the Deep Learning Toolbox Model Quantization Library support
package. Using a GPU requires a CUDA® enabled NVIDIA® GPU with compute capability 6.1, 6.3 or
higher.

Precision and Range
Scaled 8-bit integer data types have limited precision and range when compared to single-precision
floating point data types. There are several numerical considerations when casting a number from a
larger floating-point data type to a smaller data type of fixed length.

• Precision loss: Precision loss is a rounding error. When precision loss occurs, the value is rounded
to the nearest number that is representable by the data type. In the case of a tie it rounds:

• Positive numbers to the closest representable value in the direction of positive infinity.
• Negative numbers to the closest representable value in the direction of negative infinity.

In MATLAB you can perform this type of rounding using the round function.
• Underflow: Underflow is a type of precision loss. Underflows occur when the value is smaller than

the smallest value representable by the data type. When this occurs, the value saturates to zero.
• Overflow: When a value is larger than the largest value that a data type can represent, an
overflow occurs. When an overflow occurs, the value saturates to the largest value representable
by the data type.

Histograms of Dynamic Ranges
Use the Deep Network Quantizer app to collect and visualize the dynamic ranges of the weights
and biases of the convolution layers and fully connected layers of a network, and the activations of all
layers in the network. The app assigns a scaled 8-bit integer data type for the weights, biases, and
activations of the convolution layers of the network. The app displays a histogram of the dynamic
range for each of these parameters. The following steps describe how these histograms are produced.

1 For example, to begin, consider the following values logged for a parameter while exercising a
network.
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2 Find the ideal binary representation of each logged value of the parameter.

The most significant bit (MSB) is the left-most bit of the binary word. This bit contributes most to
the value of the number. The MSB for each value is highlighted in yellow.
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3 By aligning the binary words, you can see the distribution of bits used by the logged values of a
parameter. Sum the number of MSB's in each column for an aggregate view of the logged values.
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4 Display the MSB counts of each bit location as a heat map. In this heat map, darker blue regions
correspond to a larger number of MSB's in the bit location.

5 The software assigns a data type that can represent the bit locations that capture the most
information. In this example, the software selects a data type that represents bits from 23 to 2-3.
An additional sign bit is required to represent the signedness of the value.
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6 After assigning the data type, any bits outside of that data type are removed. In this sample, the
first value, 0.03125, suffers from an underflow, so the quantized value is 0. The ideal value 2.1
suffers some precision loss, so the quantized value is 2.125. The value 16.250 is larger than the
largest representable value of the data type, so this value overflows. The quantized value
saturates to 15.874.
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7 The app displays this heat map histogram for each learnable parameter in the convolution layers
and fully connected layers of the network. The gray regions of the histogram show the bits that
cannot be represented by the data type.
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See Also
Apps
Deep Network Quantizer

Functions
calibrate | dlquantizationOptions | dlquantizer | validate
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Quantization Workflow Prerequisites
This table lists the products required to quantize and deploy deep learning networks.

 Execution Environment
Development Host
Requirements

FPGA GPU

Setup Toolkit Environment hdlsetuptoolpath (HDL
Coder)

“Setting Up the Prerequisite
Products” (GPU Coder)

Required Products • Deep Learning Toolbox
• Deep Learning HDL Toolbox

Deep Learning Toolbox

Required Support Packages • Deep Learning Toolbox
Model Quantization Library

• Deep Learning HDL Toolbox
Support Package for Xilinx
FPGA and SoC Devices

• Deep Learning HDL Toolbox
Support Package for Intel
FPGA and SoC Devices

Deep Learning Toolbox Model
Quantization Library

Supported Networks and
Layers

“Supported Networks, Layers
and Boards” on page 7-2

“Supported Networks and
Layers” (GPU Coder)

Deployment Deep Learning HDL Toolbox GPU Coder
Additional Add Ons MATLAB Coder™ Interface for

Deep Learning Libraries
• GPU Coder Interface for

Deep Learning Libraries
• CUDA enabled NVIDIA GPU

with compute capability 6.1,
6.3 or higher.
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Calibration
Workflow
Collect the dynamic ranges of the weights and biases in the convolution and fully connected layers of
the quantized network and the dynamic ranges of the activations in all layers.

The calibrate method uses the collected dynamic ranges to generate an exponents file. The
dlhdl.Workflow class compile method uses the exponents file to generate a configuration file that
contains the weights and biases of the quantized network.

This workflow is the workflow to calibrate your quantized series deep learning network.
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See Also
calibrate | dlquantizationOptions | dlquantizer | validate

More About
• “Quantization of Deep Neural Networks” on page 11-2
• “Validation” on page 11-12
• “Code Generation and Deployment” on page 11-15
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Validation

Workflow
Before deploying the quantized network to your target FPGA or SoC board, to verify the accuracy of
your quantized network, use the validation workflow.

This workflow is the workflow to validate your quantized series deep learning network.
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See Also
dlquantizationOptions | dlquantizer | validate
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More About
• “Quantization of Deep Neural Networks” on page 11-2
• “Calibration” on page 11-10
• “Code Generation and Deployment” on page 11-15
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Code Generation and Deployment
To generated code for and deploy your quantized deep learning network, create an object of class
dlhdl.Workflow. Use this object to accomplish tasks such as:

• Compile and deploy the quantized deep learning network on a target FPGA or SoC board by using
the deploy function.

• Estimate the speed of the quantized deep learning network in terms of number of frames per
second by using the estimate function.

• Execute the deployed quantized deep learning network and predict the classification of input
images by using the predict function.

• Calculate the speed and profile of the deployed quantized deep learning network by using the
predict function. Set the Profile parameter to on.

This figure illustrates the workflow to deploy your quantized deep learning network to the FPGA
boards.
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See Also
dlhdl.Workflow | dlhdl.Target | dlquantizer

More About
• “Quantization of Deep Neural Networks” on page 11-2
• “Calibration” on page 11-10
• “Validation” on page 11-12
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Deploy Quantized Neural Network
This example shows how to train, compile, and deploy a modified quantized AlexNet pretrained series
network by using the Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC.
Quantization helps reduce the memory requirement of a deep neural network by quantizing weights,
biases and activations of network layers to 8-bit scaled integer data types. Use MATLAB® to retrieve
the prediction results from the target device.

Prerequisites
To run this example, you need the products listed under FPGA in “Quantization Workflow
Prerequisites” on page 11-9.

Create Modified Series Network by Using Transfer Learning
Create a modified series network by using transfer learning. For more information, see “Create
Series Network for Quantization” on page 10-72.

Create Quantized Network Object
Create a dlquantizer object and specify the network to quantize and ExecutionEnvironment .
The netTransfer network is the output of the modified network created by transfer learning. To
create the netTransfer series network, see “Create Series Network for Quantization” on page 10-
72.

dlQuantObj = dlquantizer(netTransfer,'ExecutionEnvironment','FPGA');

Load Training Data
Unzip and load the new images as an image datastore. imageDatastore automatically labels the
images based on folder names and stores the data as an ImageDatastore object. An image
datastore enables you to store large image data, including data that does not fit in memory, and
efficiently read batches of images during training of a convolutional neural network.

Divide the data into training and validation data sets. Use 70% of the images for training and 30% for
validation. splitEachLabel splits the images datastore into two new datastores.
curDir = pwd;
newDir = fullfile(matlabroot,'examples','deeplearning_shared','data','logos_dataset.zip');
copyfile(newDir,curDir);
unzip('logos_dataset.zip');
unzip('logos_dataset.zip');

imds = imageDatastore('logos_dataset', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');

Calibrate Quantized Network
Use the calibrate function to run the network with sample inputs and collect range information.
The calibrate function exercises the network and collects the dynamic ranges of the weights and
biases in the convolution and fully connected layers of the network and the dynamic ranges of the
activations in all layers of the network. The function returns a table. Each row of the table contains
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range information for a learnable parameter of the optimized network. For best quantization results,
the calibration data must be a representative of actual inputs that would be predicted by the network.
imageData = imageDatastore(fullfile(curDir,'logos_dataset'),...
 'IncludeSubfolders',true,'FileExtensions','.JPG','LabelSource','foldernames');

dlQuantObj.calibrate(imageData);

Create Target Object
Create a target object with a custom name for your target device and an interface to connect your
target device to the host computer. Interface options are JTAG and Ethernet. To create the target
object, enter:
hTarget = dlhdl.Target('Xilinx','Interface','Ethernet','IPAddress','192.168.1.101');

Create Workflow Object
Create an object of the dlhdl.Workflow class. When you create the object, specify the network and
the bitstream name. Specify dlQuantObj as the network. Make sure that the bitstream name
matches the data type and the FPGA board that you are targeting. In this example the target FPGA
board is the Xilinx ZCU102 SOC board. The bitstream uses an int8 data type.
hW = dlhdl.Workflow('network', dlQuantObj, 'Bitstream', 'zcu102_int8','Target',hTarget);

Compile Quantized Series Network
Compile the quantized series network.

dn = hW.compile

    offset_name                 offset_address    allocated_space
    "InputDataOffset"           "0x00000000"     "48.0 MB"        
    "OutputResultOffset"        "0x03000000"     "4.0 MB"         
    "SystemBufferOffset"        "0x03400000"     "28.0 MB"        
    "InstructionDataOffset"     "0x05000000"     "4.0 MB"         
    "ConvWeightDataOffset"      "0x05400000"     "4.0 MB"         
    "FCWeightDataOffset"        "0x05800000"     "56.0 MB"        
    "EndOffset"                 "0x09000000"     "Total: 144.0 MB"
dn = struct with fields:
       Operators: [1×1 struct]
    LayerConfigs: [1×1 struct]
      NetConfigs: [1×1 struct]

Program Bitstream onto FPGA and Download Network Weights
Run the deploy function of the dlhdl.Workflow object to deploy the network on the Xilinx ZCU102
SoC hardware. This function uses the output of the compile function to program the FPGA board by
using the programming file. It also downloads the network weights and biases. The deploy function
starts programming the FPGA device, displays progress messages, and the time it takes to deploy the
network.

hW.deploy
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Load the Example Images and Run the Prediction
Load the example images and retrieve the prediction results.

idx = randperm(numel(imdsValidation.Files),4);
figure
for i = 1:4
    subplot(2,2,i)
    I = readimage(imdsValidation,idx(i));
    imshow(I)
    [prediction, speed] = hW.predict(single(I),'Profile','on');
    [val, index] = max(prediction);
    netTransfer.Layers(end).ClassNames{index}
    label = netTransfer.Layers(end).ClassNames{index}
    title(string(label));
end

### Finished writing input activations.
### Running single input activations.
Deep Learning Processor Profiler Performance ResultsLastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                    7615557                  0.05077                       1            7616123             19.7
    conv_module            3123657                  0.02082 
        conv1               733903                  0.00489 
        norm1               485953                  0.00324 
        pool1               108979                  0.00073 
        conv2               631639                  0.00421 
        norm2               289646                  0.00193 
        pool2               115286                  0.00077 
        conv3               307112                  0.00205 
        conv4               249627                  0.00166 
        conv5               176223                  0.00117 
        pool5                25404                  0.00017 
    fc_module              4491900                  0.02995 
        fc6                3083885                  0.02056 
        fc7                1370258                  0.00914 
        fc                   37755                  0.00025 
 * The clock frequency of the DL processor is: 150MHz
ans = 'carlsberg'

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance ResultsLastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                    7615364                  0.05077                       1            7615905             19.7
    conv_module            3123385                  0.02082 
        conv1               733946                  0.00489 
        norm1               485695                  0.00324 
        pool1               108971                  0.00073 
        conv2               631616                  0.00421 
        norm2               289612                  0.00193 
        pool2               115363                  0.00077 
        conv3               307034                  0.00205 
        conv4               249683                  0.00166 
        conv5               176216                  0.00117 
        pool5                25364                  0.00017 
    fc_module              4491979                  0.02995 
        fc6                3083961                  0.02056 
        fc7                1370258                  0.00914 
        fc                   37758                  0.00025 
 * The clock frequency of the DL processor is: 150MHz
ans = 'pepsi'

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance ResultsLastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                    7615042                  0.05077                       1            7615582             19.7
    conv_module            3123107                  0.02082 
        conv1               733949                  0.00489 
        norm1               485783                  0.00324 
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        pool1               108565                  0.00072 
        conv2               631567                  0.00421 
        norm2               289568                  0.00193 
        pool2               115037                  0.00077 
        conv3               307355                  0.00205 
        conv4               249793                  0.00167 
        conv5               176217                  0.00117 
        pool5                25388                  0.00017 
    fc_module              4491935                  0.02995 
        fc6                3083920                  0.02056 
        fc7                1370258                  0.00914 
        fc                   37755                  0.00025 
 * The clock frequency of the DL processor is: 150MHz
ans = 'tsingtao'

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance ResultsLastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                    7615303                  0.05077                       1            7615843             19.7
    conv_module            3123324                  0.02082 
        conv1               733883                  0.00489 
        norm1               485688                  0.00324 
        pool1               108995                  0.00073 
        conv2               631598                  0.00421 
        norm2               289636                  0.00193 
        pool2               115351                  0.00077 
        conv3               307108                  0.00205 
        conv4               249623                  0.00166 
        conv5               176193                  0.00117 
        pool5                25364                  0.00017 
    fc_module              4491979                  0.02995 
        fc6                3083961                  0.02056 
        fc7                1370258                  0.00914 
        fc                   37758                  0.00025 
 * The clock frequency of the DL processor is: 150MHz
ans = 'singha'
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See Also
Functions
calibrate | validate | compile | deploy | predict

Objects
dlhdl.Target | dlhdl.Workflow | dlquantizationOptions | dlquantizer

More About
• “Quantization of Deep Neural Networks” on page 11-2
• “Transfer Learning”
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Quantize Neural Network for FPGA Execution Environment
This example shows how to quantize learnable parameters in the convolution layers of a neural
network, and explore the behavior of the quantized network. In this example, you quantize the
LogoNet neural network. Quantization helps reduce the memory requirement of a deep neural
network by quantizing weights, biases and activations of network layers to 8-bit scaled integer data
types. Use MATLAB® to retrieve the prediction results from the target device.

Prerequisites
To run this example, you need the products listed under FPGA in “Quantization Workflow
Prerequisites” on page 11-9.

Load Pretrained Series Network
Create a file in your current working directory called getLogoNetwork.m. Enter these lines into the
file:
function net = getLogoNetwork()
    data = getLogoData();
    net  = data.convnet;
end

function data = getLogoData()
    if ~isfile('LogoNet.mat')
        url = 'https://www.mathworks.com/supportfiles/gpucoder/cnn_models/logo_detection/LogoNet.mat';
        websave('LogoNet.mat',url);
    end
    data = load('LogoNet.mat');
end

snet = getLogoNetwork();

snet = 

  SeriesNetwork with properties:

         Layers: [22×1 nnet.cnn.layer.Layer]
     InputNames: {'imageinput'}
    OutputNames: {'classoutput'}

Define Calibration and Validation Data Sets
The calibration data is used to collect the dynamic ranges of the weights and biases in the
convolution and fully connected layers of the network and the dynamic ranges of the activations in all
layers of the network. For the best quantization results, the calibration data must be representative of
inputs to the network.

The validation data is used to test the network after quantization to understand the effects of the
limited range and precision of the quantized convolution layers in the network.

In this example, use the images in the logos_dataset data set. Define an
augmentedImageDatastore object to resize the data for the network. Then, split the data into
calibration and validation data sets.
curDir = pwd;
newDir = fullfile(matlabroot,'examples','deeplearning_shared','data','logos_dataset.zip');
copyfile(newDir,curDir);
unzip('logos_dataset.zip');
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imageData = imageDatastore(fullfile(curDir,'logos_dataset'),...
 'IncludeSubfolders',true,'FileExtensions','.JPG','LabelSource','foldernames');
[calibrationData, validationData] = splitEachLabel(imageData, 0.5,'randomized');

Create Quantized Network Object
Create a dlquantizer object and specify the network to quantize.

dlQuantObj = dlquantizer(snet,'ExecutionEnvironment','FPGA');

Calibrate Quantized Network
Use the calibrate function to exercise the network with sample inputs and collect range
information. The calibrate function exercises the network and collects the dynamic ranges of the
weights and biases in the convolution and fully connected layers of the network and the dynamic
ranges of the activations in all layers of the network. The function returns a table. Each row of the
table contains range information for a learnable parameter of the optimized network.

 dlQuantObj.calibrate(calibrationData)

ans = 
        Optimized Layer Name        Network Layer Name    Learnables / Activations     MinValue       MaxValue 
    ____________________________    __________________    ________________________    ___________    __________

    {'conv_1_Weights'          }      {'conv_1'    }           "Weights"                -0.048978      0.039352
    {'conv_1_Bias'             }      {'conv_1'    }           "Bias"                     0.99996        1.0028
    {'conv_2_Weights'          }      {'conv_2'    }           "Weights"                -0.055518      0.061901
    {'conv_2_Bias'             }      {'conv_2'    }           "Bias"                 -0.00061171       0.00227
    {'conv_3_Weights'          }      {'conv_3'    }           "Weights"                -0.045942      0.046927
    {'conv_3_Bias'             }      {'conv_3'    }           "Bias"                  -0.0013998     0.0015218
    {'conv_4_Weights'          }      {'conv_4'    }           "Weights"                -0.045967         0.051
    {'conv_4_Bias'             }      {'conv_4'    }           "Bias"                    -0.00164     0.0037892
    {'fc_1_Weights'            }      {'fc_1'      }           "Weights"                -0.051394      0.054344
    {'fc_1_Bias'               }      {'fc_1'      }           "Bias"                 -0.00052319    0.00084454
    {'fc_2_Weights'            }      {'fc_2'      }           "Weights"                 -0.05016      0.051557
    {'fc_2_Bias'               }      {'fc_2'      }           "Bias"                  -0.0017564     0.0018502
    {'fc_3_Weights'            }      {'fc_3'      }           "Weights"                -0.050706       0.04678
    {'fc_3_Bias'               }      {'fc_3'      }           "Bias"                    -0.02951      0.024855
    {'imageinput'              }      {'imageinput'}           "Activations"                    0           255
    {'imageinput_normalization'}      {'imageinput'}           "Activations"              -139.34        198.72

Create Target Object
Create a target object with a custom name for your target device and an interface to connect your
target device to the host computer. Interface options are JTAG and Ethernet. To create the target
object, enter:
hTarget = dlhdl.Target('Intel', 'Interface', 'JTAG');

Define Metric Function
Define a metric function to use to compare the behavior of the network before and after quantization.
Save this function in a local file.
function accuracy = hComputeAccuracy(predictionScores, net, dataStore)
%% hComputeAccuracy test helper function computes model level accuracy statistics

% Copyright 2020 The MathWorks, Inc.
    
    % Load ground truth 
    groundTruth = dataStore.Labels;
    
    % Compare with predicted label with actual ground truth 
    predictionError = {};
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    for idx=1:numel(groundTruth)
        [~, idy] = max(predictionScores(idx, :)); 
        yActual = net.Layers(end).Classes(idy);
        predictionError{end+1} = (yActual == groundTruth(idx)); %#ok
    end
    
    % Sum all prediction errors.
    predictionError = [predictionError{:}];
    accuracy = sum(predictionError)/numel(predictionError);
end

Create dlQuantizationOptions Object
Specify the metric function in a dlquantizationOptions object.
options = dlquantizationOptions('MetricFcn', ...
    {@(x)hComputeModelAccuracy(x, snet, validationData)},'Bitstream','arria10soc_int8',...
'Target',hTarget);

Validate Quantized Neural Network
To compile and deploy the quantized network, run the validate function of the dlquantizer
object. Use the validate function to quantize the learnable parameters in the convolution layers of
the network and exercise the network. This function uses the output of the compile function to
program the FPGA board by using the programming file. It also downloads the network weights and
biases. The deploy function checks for the Intel Quartus tool and the supported tool version. It then
starts programming the FPGA device by using the sof file, displays progress messages, and the time it
takes to deploy the network. The function uses the metric function defined in the
dlquantizationOptions object to compare the results of the network before and after
quantization.

prediction = dlQuantObj.validate(validationData,options);

           offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "48.0 MB"        
    "OutputResultOffset"        "0x03000000"     "4.0 MB"         
    "SystemBufferOffset"        "0x03400000"     "60.0 MB"        
    "InstructionDataOffset"     "0x07000000"     "8.0 MB"         
    "ConvWeightDataOffset"      "0x07800000"     "8.0 MB"         
    "FCWeightDataOffset"        "0x08000000"     "12.0 MB"        
    "EndOffset"                 "0x08c00000"     "Total: 140.0 MB"

### Programming FPGA Bitstream using JTAG...
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 16-Jul-2020 12:45:10
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 16-Jul-2020 12:45:26
### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570959                  0.09047                      30          380609145             11.8
    conv_module           12667786                  0.08445 
        conv_1             3938907                  0.02626 
        maxpool_1          1544560                  0.01030 
        conv_2             2910954                  0.01941 
        maxpool_2           577524                  0.00385 
        conv_3             2552707                  0.01702 
        maxpool_3           676542                  0.00451 
        conv_4              455434                  0.00304 
        maxpool_4            11251                  0.00008 
    fc_module               903173                  0.00602 
        fc_1                536164                  0.00357 
        fc_2                342643                  0.00228 
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        fc_3                 24364                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570364                  0.09047                      30          380612682             11.8
    conv_module           12667103                  0.08445 
        conv_1             3939296                  0.02626 
        maxpool_1          1544371                  0.01030 
        conv_2             2910747                  0.01940 
        maxpool_2           577654                  0.00385 
        conv_3             2551829                  0.01701 
        maxpool_3           676548                  0.00451 
        conv_4              455396                  0.00304 
        maxpool_4            11355                  0.00008 
    fc_module               903261                  0.00602 
        fc_1                536206                  0.00357 
        fc_2                342688                  0.00228 
        fc_3                 24365                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13571561                  0.09048                      30          380608338             11.8
    conv_module           12668340                  0.08446 
        conv_1             3939070                  0.02626 
        maxpool_1          1545327                  0.01030 
        conv_2             2911061                  0.01941 
        maxpool_2           577557                  0.00385 
        conv_3             2552082                  0.01701 
        maxpool_3           676506                  0.00451 
        conv_4              455582                  0.00304 
        maxpool_4            11248                  0.00007 
    fc_module               903221                  0.00602 
        fc_1                536167                  0.00357 
        fc_2                342643                  0.00228 
        fc_3                 24409                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13569862                  0.09047                      30          380613327             11.8
    conv_module           12666756                  0.08445 
        conv_1             3939212                  0.02626 
        maxpool_1          1543267                  0.01029 
        conv_2             2911184                  0.01941 
        maxpool_2           577275                  0.00385 
        conv_3             2552868                  0.01702 
        maxpool_3           676438                  0.00451 
        conv_4              455353                  0.00304 
        maxpool_4            11252                  0.00008 
    fc_module               903106                  0.00602 
        fc_1                536050                  0.00357 
        fc_2                342645                  0.00228 
        fc_3                 24409                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.
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              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570823                  0.09047                      30          380619836             11.8
    conv_module           12667607                  0.08445 
        conv_1             3939074                  0.02626 
        maxpool_1          1544519                  0.01030 
        conv_2             2910636                  0.01940 
        maxpool_2           577769                  0.00385 
        conv_3             2551800                  0.01701 
        maxpool_3           676795                  0.00451 
        conv_4              455859                  0.00304 
        maxpool_4            11248                  0.00007 
    fc_module               903216                  0.00602 
        fc_1                536165                  0.00357 
        fc_2                342643                  0.00228 
        fc_3                 24406                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

          offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "48.0 MB"        
    "OutputResultOffset"        "0x03000000"     "4.0 MB"         
    "SystemBufferOffset"        "0x03400000"     "60.0 MB"        
    "InstructionDataOffset"     "0x07000000"     "8.0 MB"         
    "ConvWeightDataOffset"      "0x07800000"     "8.0 MB"         
    "FCWeightDataOffset"        "0x08000000"     "12.0 MB"        
    "EndOffset"                 "0x08c00000"     "Total: 140.0 MB"

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.
### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13572329                  0.09048                      10          127265075             11.8
    conv_module           12669135                  0.08446 
        conv_1             3939559                  0.02626 
        maxpool_1          1545378                  0.01030 
        conv_2             2911243                  0.01941 
        maxpool_2           577422                  0.00385 
        conv_3             2552064                  0.01701 
        maxpool_3           676678                  0.00451 
        conv_4              455657                  0.00304 
        maxpool_4            11227                  0.00007 
    fc_module               903194                  0.00602 
        fc_1                536140                  0.00357 
        fc_2                342688                  0.00228 
        fc_3                 24364                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13572527                  0.09048                      10          127266427             11.8
    conv_module           12669266                  0.08446 
        conv_1             3939776                  0.02627 
        maxpool_1          1545632                  0.01030 
        conv_2             2911169                  0.01941 
        maxpool_2           577592                  0.00385 
        conv_3             2551613                  0.01701 
        maxpool_3           676811                  0.00451 
        conv_4              455418                  0.00304 
        maxpool_4            11348                  0.00008 
    fc_module               903261                  0.00602 
        fc_1                536205                  0.00357 
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        fc_2                342689                  0.00228 
        fc_3                 24365                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

View Performance of Quantized Neural Network
Examine the MetricResults.Result field of the validation output to see the performance of the
quantized network.

prediction.MetricResults.Result

ans = 
    NetworkImplementation    MetricOutput
    _____________________    ____________

     {'Floating-Point'}         0.9875   
     {'Quantized'     }         0.9875   

Examine the QuantizedNetworkFPS field of the validation output to see the frames per second
performance of the quantized network.

prediction.QuantizedNetworkFPS

ans = 11.8126

See Also
Functions
calibrate | validate | compile | deploy | predict

Objects
dlhdl.Target | dlhdl.Workflow | dlquantizationOptions | dlquantizer

More About
• “Quantization of Deep Neural Networks” on page 11-2
• “Deploy Quantized Neural Network” on page 11-17
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• “Deep Learning Processor IP Core” on page 12-2
• “Compiler Output” on page 12-3
• “External Memory Data Format” on page 12-4
• “Deep Learning Processor Register Map” on page 12-7
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Deep Learning Processor IP Core
The generated deep learning (DL) processor IP core is a standard AXI interface IP core that contains:

• AXI slave interface to program the DL processor IP core.
• AXI master interfaces to access the external memory of the target board.

To generate the DL processor IP core, use the HDL Coder™ IP core generation workflow. The
generated IP core contains a standard set of registers and the generated IP core report. For more
information, see “Deep Learning Processor Register Map” on page 12-7

The DL processor IP core reads inputs from the external memory and sends outputs to the external
memory. The external memory buffer allocation is calculated by the compiler based on the network
size and your hardware design. For more information, see “Compiler Output” on page 12-3.

The input and output data stored in the external memory in a predefined format. For more
information, see “External Memory Data Format” on page 12-4.

See Also

More About
• “Custom IP Core Generation” (HDL Coder)
• “Compiler Output” on page 12-3
• “External Memory Data Format” on page 12-4
• “Deep Learning Processor Register Map” on page 12-7
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Compiler Output
To manually load the input data, deep learning processor IP core convolution and fully connected
module instructions, pretrained series network layer instructions, weights and biases, and retrieve
the output results use the compiler generated external memory address map. Or, use the
dlhdl.Workflow workflow. The workflow generates the external memory address map, loads the
inputs, module instructions, layers instructions, weights and biases, and retrieves the output results.

External Memory Address Map
When you create a dlhdl.Workflow object and use the compile method, an external memory
address map is generated.

The compile method generates these address offsets based on the deep learning network and target
board:

• InputDataOffset—Address offset where the input images are loaded.
• OutputResultOffset— Output results are written starting at this address offset.
• SystemBufferOffset— Do not use the memory address starting at this offset and ending at the

start of the InstructionDataOffset.
• InstructionDataOffset— All layer configuration (LC) instructions are written starting at this

address offset.
• ConvWeightDataOffset— All conv processing module weights are written starting at this

address offset.
• FCWeightDataOffset— All fully connected (FC) processing module weights are written starting

at this address offset.
• EndOffset— DDR memory end offset for generated deep learning processor IP.

The example displays the external memory map generated for the logo recognition network that uses
the arria10soc_single bitstream. “Compile the dlhdl.Workflow object”.

See Also

More About
• “Deep Learning Processor IP Core” on page 12-2
• “External Memory Data Format” on page 12-4
• “Deep Learning Processor Register Map” on page 12-7
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External Memory Data Format
To load the input image to the deployed deep learning processor IP core and retrieve the output
results, you can read data from the external memory and write data to the external memory by using
the dlhdl.Workflow workflow. This workflow formats your data. Or, you can manually format your
input data. Process the formatted output data by using the external memory data format.

Key Terminology
• Parallel Data Transfer Number refers to the number of pixels that are transferred every

clock cycle through the AXI master interface. Use the letter N in place of the Parallel Data
Transfer Number. Mathematically N is the square root of the ConvThreadNumber. See
“ConvThreadNumber”.

• Feature Number refers to the value of the z dimension of an x-by-y-by-z matrix. For example,
most input images are of dimension x-by-y-by-three, with three referring to the red, green, and
blue channels of an image. Use the letter Z in place of the Feature Number.

Convolution Module External Memory Data Format
The inputs and outputs of the deep learning processor convolution module are typically three-
dimensional (3-D).The external memory stores the data in a one-dimensional (1-D) vector. Converting
the 3-D input image into 1-D to store in the external memory :

1 Send N number of data in the z dimension of the matrix.
2 Send the image information along the x dimension of the input image.
3 Send the image information along the y dimension of the input image.
4 After the first NXY block is completed, we then send the next NXY block along the z dimension of

the matrix.

The image demonstrates how the data stored in a 3-by-3-by-4 matrix is translated into a 1-by-36
matrix that is then stored in the external memory.

When the image Feature Number (Z) is not a multiple of the Parallel Data Transfer Number
(N), then we must pad a zeroes matrix of size x-by-y along the z dimension of the matrix to make the
image Z value a multiple of N.

For example, if your input image is an x-by-y matrix with a Z value of three and the value of N is four,
pad the image with a zeros matrix of size x-by-y to make the input to the external memory an x-by-y-
by-4 matrix.

This image is the input image format before padding.
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This image is the input image format after zero padding.

The image shows the example output external memory data format for the input matrix after the zero
padding. In the image, A, B, and C are the three features of the input image and G is the zero- padded
data to make the input image Z value four, which is a multiple of N.

If your deep learning processor consists of only a convolution (conv) processing module, the output
external data is using the conv module external data format, which means it possibly contains padded
data if your output Z value is not a multiple of the N value. The padded data is removed when you use
the dlhdl.Workflow workflow. If you do not use the dlhdl.Workflow workflow and directly read
the output from the external memory, remove the padded data.

Fully Connected Module External Memory Data Format
If your deep learning network consists of both the convolution (conv) and fully connected (fc) layers,
the output of the deep learning (DL) processor follows the fc module external memory data format.

The image shows the example external memory output data format for a fully connected output
feature size of six. In the image, A, B, C, D, E, and F are the output features of the image.

See Also

More About
• “Deep Learning Processor IP Core” on page 12-2
• “Compiler Output” on page 12-3
• “Deep Learning Processor Register Map” on page 12-7
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See Also
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Deep Learning Processor Register Map
During custom processor generation, AXI4 slave registers are created to enable MATLAB or other
master devices to control and program the deep learning (DL) processor IP core.

The DL processor IP core is generated by using the HDL Coder IP core generation workflow. The
generated IP core contains a standard set of registers. For more information, see “Custom IP Core
Generation” (HDL Coder).

For the full list of register offsets, see the Register Address Mapping table in the generated deep
learning (DL) processor IP core report.

The image contains all the AXI4 registers created during IP core generation.
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See Also

More About
• “Deep Learning Processor IP Core” on page 12-2
• “Compiler Output” on page 12-3
• “External Memory Data Format” on page 12-4
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